Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Image formation mechanisms in scanning electron microscopy of carbon nanotubes,and retrieval of their intrinsic dimensions.
Karlstads universitet, Fakulteten för teknik- och naturvetenskap, Avdelningen för fysik och elektroteknik.
Karlstads universitet, Fakulteten för teknik- och naturvetenskap, Avdelningen för maskin- och materialteknik.ORCID-id: 0000-0002-9441-2502
Karlstads universitet, Fakulteten för teknik- och naturvetenskap, Avdelningen för fysik och elektroteknik.ORCID-id: 0000-0003-1711-5595
2013 (Engelska)Ingår i: Ultramicroscopy, ISSN 0304-3991, Vol. 124, s. 35-39Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present a detailed analysis of the image formation mechanisms that are involved in the imaging of carbon nanotubes with scanning electron microscopy (SEM). We show how SEM images can be modelled by accounting for surface enhancement effects together with the absorption coefficient for secondary electrons, and the electron-probe shape. Images can then be deconvoluted, enabling retrieval of the intrinsic nanotube dimensions. Accurate estimates of their dimensions can thereby be obtained even for structures that are comparable to the electron-probe size (on the order of 2 nm). We also present a simple and robust model for obtaining the outer diameter of nanotubes without any detailed knowledge about the electron-probe shape.

Ort, förlag, år, upplaga, sidor
Elsevier, 2013. Vol. 124, s. 35-39
Nyckelord [en]
Scanning electron microscopy; Carbon nanotubes; Imaging mechanisms; Deconvolution; Electron-probe shape
Nationell ämneskategori
Den kondenserade materiens fysik
Forskningsämne
Fysik
Identifikatorer
URN: urn:nbn:se:kau:diva-16425DOI: 10.1016/j.ultramic.2012.08.012ISI: 000311823700006PubMedID: 23142742OAI: oai:DiVA.org:kau-16425DiVA, id: diva2:589621
Forskningsfinansiär
Vetenskapsrådet, 2010-4324Tillgänglig från: 2014-02-21 Skapad: 2013-01-18 Senast uppdaterad: 2019-07-12Bibliografiskt granskad
Ingår i avhandling
1. Mechanical behaviour of carbon nanostructures
Öppna denna publikation i ny flik eller fönster >>Mechanical behaviour of carbon nanostructures
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Abstract

Carbon nanotubes (CNTs) have extraordinary mechanical and electrical properties. Together with their small dimensions and low density, they are attractive candidates for building blocks in future nanoelectromechanical systems and for many other applications. The extraordinary properties are however only attained by perfectly crystalline CNTs and quickly deteriorate when defects are introduced to the structure. The growth technique affects the crystallinity where in general CNTs grown by arc-discharge are close to perfectly crystalline, while CVD-grown CNTs have large defect densities. Mechanical deformation also affects these properties, even without introducing defects. When CNTs are bent they behave similarly to drinking straws, i.e. they buckle or ripple and their bending stiffness drops abruptly.

In this thesis, the mechanical behaviour of individual CNTs and vertically aligned carbon nanofibers (VACNFs) has been studied by performing force measurements inside electron microscopes. Cantilevered CNTs, and VACNFs, were bent using a force sensor, yielding force-deflection curves while their structure was imaged simultaneously.

We have found that CNTs grown by arc-discharge have a high enough crystallinity to possess a Young’s modulus close to the ideal value of 1 TPa. CVD-grown CNTs possess a Young’s modulus that is about one order of magnitude smaller, due to their large defect density. The VACNFs are yet another order of magnitude softer as a result of their cup-stacked internal structure.  We also found that a high defect density will increase the critical strain for the rippling onset and the relative post-rippling stiffness. Multi-walled CNTs with a small inner diameter are less prone to ripple and have a larger relative post-rippling stiffness. Our findings show large variations in the onset of rippling and the bending stiffness before and after rippling. These variations open up possibilities of tailoring the mechanical properties for specific applications.

Abstract [en]

Baksidetext

Carbon nanotubes (CNTs) have extraordinary mechanical and electrical properties. Together with their small dimensions and low density, they are attractive candidates for building blocks in nanoelectromechanical systems (NEMS), and many other applications.  In this thesis the mechanical behaviour of individual CNTs and vertically aligned carbon nanofibers has been studied by performing force measurements inside electron microscopes. We have found that the mechanical behaviour is very sensitive to the defect density and the internal structure of the CNTs. The extraordinary properties are only attained by defect free CNTs and quickly deteriorate if defects are introduced to the structure. Mechanical deformations also alter these properties. Single-walled CNTs behave similarly to drinking straws when bent, i.e. they buckle, while the inner tubes of multi-walled CNTs prevent buckling. Instead a more distributed rippling pattern is created for multi-walled CNTs. Both these deformation behaviours will cause an abrupt drop in the bending stiffness, which is detrimental for many applications. The findings in this work will have implications for the design of future NEMS.

Ort, förlag, år, upplaga, sidor
Karlstad: Karlstads universitet, 2014
Serie
Karlstad University Studies, ISSN 1403-8099 ; 2014:33
Nyckelord
carbon nanotubes, CNT, multiwalled carbon nanotubes, MWCNT, rippling, buckling, mechanical properties, transmission electron microscopy, TEM, scanning electron microscopy, SEM, atomic force microscopy, AFM, Young’s modulus, in situ TEM, in situ SEM
Nationell ämneskategori
Den kondenserade materiens fysik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kau:diva-32041 (URN)978-91-7063-566-3 (ISBN)
Disputation
2014-06-13, 21A342, Karlstads universitet, Karlstad, 10:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, 2010-4324
Anmärkning

Artikel 2 Image formation mechanisms tidigare som manuskript, nu publicerad: urn:nbn:se:kau:diva-16425 (MÅ 150924)

Tillgänglig från: 2014-05-23 Skapad: 2014-05-06 Senast uppdaterad: 2017-08-11Bibliografiskt granskad
2. Mechanical properties of carbon nanotubes and nanofibers
Öppna denna publikation i ny flik eller fönster >>Mechanical properties of carbon nanotubes and nanofibers
2012 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Carbon nanotubes (CNTs) have extraordinary electrical and mechanical properties, and many potential applications have been proposed, ranging from nanoscale devices to reinforcement of macroscopic structures. However, due to their small sizes, characterization of their mechanical properties and deformation behaviours are major challenges. Theoretical modelling of deformation behaviours has shown that multi-walled carbon nanotubes (MWCNTs) can develop ripples in the walls on the contracted side when bent above a critical curvature. The rippling is reversible and accompanied by a reduction in the bending stiffness of the tubes. This behaviour will have implications for future nanoelectromechanical systems (NEMS). Although rippling has been thoroughly modelled there has been a lack of experimental data thus far. In this study, force measurements have been performed on individual MWCNTs and vertically aligned carbon nanofibers (VACNFs). This was accomplished by using a custom-made atomic force microscope (AFM) inside a scanning electron microscope (SEM). The measurements were done by bending free-standing MWCNTs/VACNFs with the AFM sensor in a cantilever-to-cantilever fashion, providing force-displacement curves. From such curves and the MWCNT/VACNF dimensions, measured from SEM-images, the critical strain for the very onset of rippling and the Young’s modulus, E, could be obtained. To enable accurate estimations of the nanotube diameter, we have developed a model of the SEM-image formation, such that intrinsic diameters can be retrieved. We have found an increase in the critical strain for smaller diameter tubes, a behaviour that compares well with previous theoretical modelling. VACNFs behaved very differently, as they did not display any rippling and had low bending stiffnesses due to inter-wall shear. We believe that our findings will have implications for the design of future NEMS devices that employ MWCNTs and VACNFs.

Ort, förlag, år, upplaga, sidor
Karlstad: Karlstad University Press, 2012. s. 60
Serie
Karlstad University Studies, ISSN 1403-8099 ; 2012:18
Nyckelord
atomic force microscopy, bending, carbon nanotubes, deformation, scanning electron microscopy, Young's modulus, carbon nanofibers, mechanical properties
Nationell ämneskategori
Den kondenserade materiens fysik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kau:diva-12925 (URN)978-91-7063-422-2 (ISBN)
Presentation
2012-06-08, 21A342, Karlstads universitet, Karlstad, 10:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, 2010-4324
Anmärkning

Artikel 2 Image formation mechanisms tidigare som manuskript, nu publicerad: urn:nbn:se:kau:diva-16425 (MÅ 150924)

Tillgänglig från: 2012-05-24 Skapad: 2012-04-16 Senast uppdaterad: 2015-09-24Bibliografiskt granskad

Open Access i DiVA

preprint_jackman(337 kB)578 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 337 kBChecksumma SHA-512
fd57385228dd81d33b2776454665c735a1496e8b2306598403c75970bd7371bd2da9eb0e071f672dcdaeb214ba7c9c579529347dde5c1e2f90a28b193a81052e
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedhttp://dx.doi.org/10.1016/j.ultramic.2012.08.012

Personposter BETA

Jackman, HenrikKrakhmalev, PavelSvensson, Krister

Sök vidare i DiVA

Av författaren/redaktören
Jackman, HenrikKrakhmalev, PavelSvensson, Krister
Av organisationen
Avdelningen för fysik och elektroteknikAvdelningen för maskin- och materialteknik
Den kondenserade materiens fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 578 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 406 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf