Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A thermodynamic and kinetic study of an unusual adsorption behavior-Methyl Mandelate on commercially available Tris-(3,5- dimethylphenyl)carbamoyl Cellulose Chiral Stationary Phase
Karlstad University, Faculty of Technology and Science, Department of Chemistry and Biomedical Sciences.ORCID iD: 0000-0002-8943-6286
Karlstad University, Faculty of Technology and Science, Department of Chemistry and Biomedical Sciences.ORCID iD: 0000-0003-1819-1709
Karlstad University, Faculty of Technology and Science, Department of Chemistry and Biomedical Sciences.ORCID iD: 0000-0002-7123-2066
2012 (English)Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

The adsorption equilibria of racemic methyl mandelate on a tris-(3,5- dimethylphenyl)carbamoyl cellulose chiral stationary phase (CSP) was investigated. The following were observed, the less retained enantiomer shows “Langmuirian” (type I) adsorption behavior, while the adsorption isotherm of the more retained compound contained an inflection point at low concentration. To analyze these differences, adsorption isotherms were determined and further analyzed using Scatchard plots and adsorption energy distribution (AED) calculations. The less retained enantiomer was best described by heterogeneous unimodal adsorption model (Tóth) while the second enantiomer was best described with a heterogeneous adsorption model with adsorbate-adsorbate interactions (bi-Moreau). The adsorption behavior of both enantiomers was also studied at several different temperatures and it was found to be exothermic; in addition, the non-idealadsorbate-adsorbate interaction strength decreases with increasing temperature. Stochastic analysis of the adsorption process could identify a single kinetic site for each enantiomer. The average amount of adsorption/desorption events increases and the sojourn time decreases with increasing temperature. This is an industrial – academic cooperation in the Fundamental Separation Science Group www.separationscience.se

Place, publisher, year, edition, pages
2012.
National Category
Analytical Chemistry
Identifiers
URN: urn:nbn:se:kau:diva-15259OAI: oai:DiVA.org:kau-15259DiVA, id: diva2:562038
Conference
21st Analysdagarna (Analytical days). Uppsala, Sverige,11-13 juni 2012.
Available from: 2012-10-23 Created: 2012-10-23 Last updated: 2019-07-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Enmark, MartinSamuelsson, JörgenFornstedt, Torgny

Search in DiVA

By author/editor
Enmark, MartinSamuelsson, JörgenFornstedt, Torgny
By organisation
Department of Chemistry and Biomedical Sciences
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 83 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf