Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Preparative Separation of Chiral Pharmaceutical Compounds - The Effects of Packing Particle Size, Pressure Limit and Column Geometry on Productivity and Solvent Consumption
Karlstad University, Faculty of Technology and Science, Department of Chemistry and Biomedical Sciences.ORCID iD: 0000-0002-8943-6286
Karlstad University, Faculty of Technology and Science, Department of Chemistry and Biomedical Sciences.ORCID iD: 0000-0003-1819-1709
Karlstad University, Faculty of Technology and Science, Department of Chemistry and Biomedical Sciences.ORCID iD: 0000-0002-7123-2066
Karlstad University, Faculty of Technology and Science, Department of Chemistry and Biomedical Sciences.
2011 (English)Conference paper, Published paper (Refereed)
Abstract [en]

In this study, omeprazole was used as a model compound. Omeprazole and other related sulfoxidebenzimidazolesare used against gastric ulcersand have been extensively studied regarding chromatographic resolution techniques using several different chiral stationary phases.First, AstraZeneca launched Losec, a racemic mixture of RS-omeprazole. Facing loss of patent, the more potent S-enantiomer was developed and marketed as Nexium. Now the patent of Nexium is close expiration why methods for isolation of the pure S-enantiomer will be of importance for the generic pharmaceutical companies.The experimental model separation system represents a system with good selectivity and high solubility of the solute in the eluent. In this investigation the productivity optima for three different particle sizes (5, 10 and 25 µm) at maximum system pressure ranging from 50 to 400 bars are studied. Two different optimizations cases were studied in depth. First,a process optimization with fixed column geometry is studied. The results clearly show that larger packing materials have higher productivity at low pressure drops on the analytical size column.With increasing allowed pressure drops, over 200 bar, the smaller packing materials have substantially higher productivity. The results also show that smaller packing material will always have much lower solvent consumption compared to larger particles.The second process optimization was performed with a fixed column volume, but the column geometry was variable. The results shows that the productivity obtained for the smaller packing particles materials was higher compared to the large for all allowed pressure drops. The productivity obtained for the small particle compared to the large increased by 25-300 % while maintaining 50-300 % less solvent consumption for the purification of the first enantiomer.The addition of TEA seems to be unfavorable for all tested conditions.In conclusion, the optimization of the enantioseparation of omeprazole has been shown to be dependent on column packing particle size as well as column geometry. It has been demonstrated that all parameters need to be simultaneously optimized to reach a global productivity optima.

Place, publisher, year, edition, pages
2011.
National Category
Chemical Sciences
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kau:diva-11530OAI: oai:DiVA.org:kau-11530DiVA, id: diva2:493070
Conference
PREP 2011 in Boston, USA
Available from: 2012-02-08 Created: 2012-02-08 Last updated: 2019-07-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://www.separationscience.se/node/411

Authority records BETA

Enmark, MartinSamuelsson, JörgenFornstedt, TorgnyForssén, Patrik

Search in DiVA

By author/editor
Enmark, MartinSamuelsson, JörgenFornstedt, TorgnyForssén, Patrik
By organisation
Department of Chemistry and Biomedical Sciences
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf