Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Oxalate decarboxylase of Trametes versicolor: biochemical characterization and performance in bleaching filtrates from the pulp and paper industry
Karlstad University, Faculty of Technology and Science, Department of Chemistry and Biomedical Sciences.
Department of Chemistry, Umeå University.
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, China.
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, China.
Show others and affiliations
2012 (English)In: Journal of chemical technology and biotechnology (1986), ISSN 0268-2575, E-ISSN 1097-4660, Vol. 87, no 11, p. 1600-1606Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Oxalate decarboxylase (ODC) from acid-induced cultures of the white-rot fungus Trametes versicolor was purified and characterized with respect to its biochemical properties and the possibility to utilize the enzyme for treatment of process water with the intention to prevent problems with calcium-oxalate scaling in the pulp and paper industry. RESULTS: Purified T. versicolor ODC was identified by tandem mass spectrometry. As estimated by using SDS-PAGE, the molecular mass was 69 kDa, and 60 kDa after deglycosylation with N-glycosidase F. The pH optimum was 2.5 and the temperature optimum was 4045 degrees C. The effects of ten potential inhibitors in industrial filtrates were examined. The enzyme was sensitive to low concentrations (0.1 mmol L-1) of chlorite and sulfite. T. versicolor ODC exhibited activity in 16 filtrates collected from mechanical pulping and kraft pulping. It had higher activity than ODC from Aspergillus niger in all of the filtrates and higher activity than oxalate oxidase from barley in all filtrates except two. CONCLUSIONS: The investigation shows basic biochemical properties of T. versicolor ODC and indicates that the enzyme may be useful for treatment of industrial filtrates under acidic conditions. Copyright (c) 2012 Society of Chemical Industry

Place, publisher, year, edition, pages
John Wiley & Sons, 2012. Vol. 87, no 11, p. 1600-1606
Keywords [en]
oxalate decarboxylase; oxalic acid; Trametes versicolor; bleaching filtrates
National Category
Chemical Sciences
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kau:diva-6331DOI: 10.1002/jctb.3801ISI: 000310251200011OAI: oai:DiVA.org:kau-6331DiVA, id: diva2:349179
Available from: 2010-09-06 Created: 2010-09-06 Last updated: 2017-08-09Bibliographically approved
In thesis
1. Industrial applications and properties of oxalate-degrading enzymes
Open this publication in new window or tab >>Industrial applications and properties of oxalate-degrading enzymes
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Oxalate-degrading enzymes were investigated with focus on potential applications in the pulp and paper industry and in active packaging. Changes introduced to make the pulp and paper industry more environmentally friendly, such as recirculation of process-water streams and elementary chlorine free bleaching of pulp, have led to increasing problems with precipitation of calcium oxalate. The potential of using enzymes for degradation of oxalic acid in industrial bleaching filtrates was explored to find a way to decrease the problem.

The studies included chemical characterization and enzymatic treatments of 34 filtrates from kraft, mechanical, and sulfite pulping. Eight oxalate-degrading enzymes were included in the experiments. The treatments of the filtrates were affected by substances that inhibit oxalate-degrading enzymes. Multivariate data analysis, analytical treatment of filtrates with ion-exchange resins, and analysis of the effects of separate compounds on the enzyme activity were employed as tools to investigate inhibiting substances and groups of inhibitors. The experiments with ion-exchangers indicated that the inhibitors included anions, cations, as well as uncharged substances. Sulfite (≥1 mM) caused complete or almost complete inhibition of all oxalate-degrading enzymes so far examined, while the effects of chlorine oxyanions differed for the various enzymes investigated. A newly discovered oxalate decarboxylase was chosen for experiments performed directly in a mill producing mechanical pulp. The new enzyme degraded 70% of the oxalic acid in one hour, while the well-characterized oxalate decarboxylase from Aspergillus niger degraded <5% of the oxalic acid during the same period of time.

Oxalate decarboxylase from the white-rot basidiomycete fungus Trametes versicolor was purified by using chromatographic methods and characterized with gel electrophoresis and tandem mass spectrometry. Results indicate that it is a 69-kDa heavily glycosylated enzyme with optimal activity at pH 2.5.

Experiments designed to investigate the potential of using oxalate oxidase from barley in active packaging showed that it could be entrapped with retained catalytic activity in a latex-polymer matrix. Furthermore, the experiments indicate that oxalate oxidase can be used in active packaging either as an oxalic acid scavenger or as an oxygen scavenger.

Place, publisher, year, edition, pages
Karlstad: Karlstad University, 2010. p. 61
Series
Karlstad University Studies, ISSN 1403-8099 ; 2010:21
Keywords
Oxalic acid, oxalate oxidase, oxalate decarboxylase, calcium oxalate, scaling, active packaging
National Category
Chemical Sciences
Research subject
Chemistry
Identifiers
urn:nbn:se:kau:diva-5916 (URN)978-91-7063-313-3 (ISBN)
Public defence
2010-09-24, Ljungbergssalen, 21A 244, Karsltads universitet, Karlstad, 10:15 (English)
Opponent
Supervisors
Available from: 2010-09-06 Created: 2010-06-18 Last updated: 2011-11-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Winestrand, SandraJönsson, Leif J.

Search in DiVA

By author/editor
Winestrand, SandraJönsson, Leif J.
By organisation
Department of Chemistry and Biomedical Sciences
In the same journal
Journal of chemical technology and biotechnology (1986)
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 166 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf