Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Embedding Theorems for Mixed Norm Spaces and Applications
Karlstads universitet, Fakulteten för teknik- och naturvetenskap, Avdelningen för matematik.
2010 (Engelska)Doktorsavhandling, monografi (Övrigt vetenskapligt)
Abstract [en]

This thesis is devoted to the study of mixed norm spaces that arise in connection with embeddings of Sobolev and Besov type spaces. We study different structural, integrability, and smoothness properties of functions satisfying certain mixed norm conditions. Conditions of this type are determined by the behaviour of linear sections of functions. The work in this direction originates in a paper due to Gagliardo (1958), and was further developed by Fournier (1988), by Blei and Fournier (1989), and by Kolyada (2005).

Here we continue these studies. We obtain some refinements of known embeddings for certain mixed norm spaces introduced by Gagliardo, and we study general properties of these spaces. In connection with these results, we consider a scale of intermediate mixed norm spaces, and prove intrinsic embeddings in this scale.

We also consider more general, fully anisotropic, mixed norm spaces. Our main theorem states an embedding of these spaces to Lorentz spaces. Applying this result, we obtain sharp embedding theorems for anisotropic Sobolev-Besov spaces, and anisotropic fractional Sobolev spaces. The methods used are based on non-increasing rearrangements, and on estimates of sections of functions and sections of sets. We also study limiting relations between embeddings of spaces of different type. More exactly, mixed norm estimates enable us to get embedding constants with sharp asymptotic behaviour. This gives an extension of the results obtained for isotropic Besov spaces by Bourgain, Brezis, and Mironescu, and for anisotropic Besov spaces by Kolyada.

We study also some basic properties (in particular the approximation properties) of special weak type spaces that play an important role in the construction of mixed norm spaces, and in the description of Sobolev type embeddings.

In the last chapter, we study mixed norm spaces consisting of functions that have smooth sections. We prove embeddings of these spaces to Lorentz spaces. From this result, known properties of Sobolev-Liouville spaces follow.

Ort, förlag, år, upplaga, sidor
Karlstad: Karlstad University , 2010. , s. 134
Serie
Karlstad University Studies, ISSN 1403-8099 ; 2010:16
Nyckelord [en]
mixed norms, rearrangements, modulus of continuity, embeddings, Sobolev spaces, Besov spaces, Lorentz spaces
Nationell ämneskategori
Matematik
Forskningsämne
Matematik
Identifikatorer
URN: urn:nbn:se:kau:diva-5646ISBN: 978-91-7063-306-5  (tryckt)OAI: oai:DiVA.org:kau-5646DiVA, id: diva2:319294
Disputation
2010-09-01, 21A 342, Karlstads universitet, Karlstad, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2010-05-28 Skapad: 2010-05-14 Senast uppdaterad: 2011-10-04Bibliografiskt granskad

Open Access i DiVA

fulltext(740 kB)1368 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 740 kBChecksumma SHA-512
e7602180d9690c253a7a7856e3eb4ed22756edcf61a8cb35fe17f6ae048278d4e818eaaa6b21903ec58b20df0551d7a2b680c638a92a414d9a2218b916fc9087
Typ fulltextMimetyp application/pdf

Personposter BETA

Algervik, Robert

Sök vidare i DiVA

Av författaren/redaktören
Algervik, Robert
Av organisationen
Avdelningen för matematik
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1368 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 539 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf