Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the Evaluation of Privacy Impact Assessment and Privacy Risk Assessment Methodologies: A Systematic Literature Review
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).ORCID iD: 0000-0003-1750-649x
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). (Privacy and Security (PriSec) Research Group)ORCID iD: 0000-0001-9005-0543
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). Oslo Metropolitan University, Norway. (Privacy and Security (PriSec) Research Group)ORCID iD: 0000-0002-0418-4121
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). (Privacy and Security (PriSec) Research Group)ORCID iD: 0000-0003-0778-4736
2024 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 12, p. 19625-19650Article, review/survey (Refereed) Published
Abstract [en]

Assessing privacy risks and incorporating privacy measures from the onset requires a comprehensive understanding of potential impacts on data subjects. Privacy Impact Assessments (PIAs) offer a systematic methodology for such purposes, which are closely related to Data Protection Impact Assessments (DPIAs), particularly outlined in Article 35 of the General Data Protection Regulation (GDPR). The core of a PIA is a Privacy Risk Assessment (PRA). PRAs can be integrated as part of full-fledged PIAs or independently developed to support PIA processes. Although these methodologies have been identified as essential enablers of privacy by design, their effectiveness has been criticized because of the lack of evidence of their rigorous and systematic evaluation. Hence, we conducted a Systematic Literature Review (SLR) to identify published PIA and PRA methodologies and assess how and to what extent they have been scientifically validated or evaluated. We found that these methodologies are rarely evaluated for their performance in practice, and most of them have only been validated in limited studies. Most validation evidence is found with PRA methodologies. Of the evaluated methodologies, PIAs were the most evaluated, where case studies were the predominant evaluation method. These evaluated methodologies can be easily transferred to an industrial setting or used by practitioners, as they provide evidence of their use in practice. In addition, the findings in this study can be used to inform researchers of the current state-of-the-art, and practitioners can understand the benefits and current limitations of the methodologies and adopt evidence-based practices. 

Place, publisher, year, edition, pages
IEEE, 2024. Vol. 12, p. 19625-19650
Keywords [en]
Privacy impact assessment, data protection impact assessment, general data protection regulation, privacy by design, privacy, review, threat modeling, privacy risks, validity, maturity.
National Category
Computer and Information Sciences
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kau:diva-98433DOI: 10.1109/access.2024.3360864ISI: 001161062400001Scopus ID: 2-s2.0-85184332904OAI: oai:DiVA.org:kau-98433DiVA, id: diva2:1836573
Projects
Digital Health Innovation (DHINO) ProjectDigitalWell Arena Project
Funder
Region Värmland, RUN/220266Vinnova, 2018-03025Available from: 2024-02-09 Created: 2024-02-09 Last updated: 2024-09-25Bibliographically approved
In thesis
1. Privacy and Security for Digital Health: Assessing Risks and Harms to Users
Open this publication in new window or tab >>Privacy and Security for Digital Health: Assessing Risks and Harms to Users
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Electronic Health (e-Health), such as mobile health (mHealth) and Health Information Systems (HIS), benefits healthcare consumers and professionals. However, it also poses potential privacy risks, as security, privacy, and human factors remain challenges in the rapid digitization of healthcare. Considering an impact assessment of the planned processing helps identify and prevent privacy risks early in the development of digital health technologies. When such risks are exploited, they can result in various privacy harms to individuals, including physical, psychological, financial, reputational, and societal harms.

This thesis deals with the overarching objective of analyzing security and privacy risks in health-related systems. Specifically, it focuses on four main topics: (i.) the analysis of a selected category of mHealth apps, specifically, COVID-19 contact tracing apps; (ii.) the exploration of the potential impact on the privacy of patients in the context of cyberwar; (iii.) identification and modeling of privacy harms after a healthcare data breach; and, (iv.) an assessment of whether privacy harms enhance privacy risk assessments. It incorporates empirical methods, including in-depth document analysis through narrative reviews and a systematic literature review. A qualitative approach is also applied, using semi-structured interviews and a privacy risk assessment (PRA) exercise.

Our results show that rapidly developed digital health apps present security and privacy risks that could impact healthcare consumers' privacy. While integrating Information and Communications Technology (ICT) in healthcare is advantageous, it also introduces new risks. State-sponsored attackers may exploit these risks, potentially causing privacy harm to healthcare service users. We identify actual privacy impacts and use this to model privacy harms by modifying a PRA methodology. In addition to identifying methods for evaluating Privacy Impact Assessments (PIAs) and PRAs, we assess the coverage of privacy harms within these existing methodologies. Furthermore, we gain insight into the operationalization of privacy harms from practitioners and how this improves PRAs. 

Among the main contributions, the research creates an awareness of the risks associated with a lack of data protection mechanisms, and data breaches as well as their impact on patient privacy. In addition, a comprehensive systematic literature review on PIAs and PRAs was conducted, which led us to focus on operationalizing privacy harms that can be integrated into PRAs to assess the impact on the privacy of healthcare consumers. As a result, privacy experts and IT practitioners in healthcare will be better informed and guided in understanding privacy harms during privacy risk assessments. This ensures that appropriate safeguards are in place to prevent the materialization of actual privacy harms

Abstract [sv]

e-Hälsa, till exempel mobil hälsa (mHälsa) och hälsoinformationssystem (HIS), gynnar både vårdkonsumenter och vårdpersonal. Trots fördelarna kan e-Hälsa  leda till potentiella integritetsskador eftersom säkerhets- och integritetsfrågor, bland annat mänskliga faktorer, fortfarande är en utmaning i den snabba digitaliseringen av hälso- och sjukvården. Genom att göra en konsekvensbedömning av den planerade behandlingen kan man identifiera och förebygga integritetsrisker i ett tidigt skede av den digitala hälsotekniken. När dessa risker utnyttjas kan de leda till potentiella integritetsskador för de registrerade, inklusive fysiska, psykologiska, ekonomiska, ryktesrelaterade och samhälleliga skador.

Den här avhandlingen handlar om det övergripande målet att analysera säkerhets- och integritetsrisker i hälsorelaterade system. I synnerhet fokuserar vi på fyra huvudämnen: (i.) analysen av en utvald kategori av mHälsa-appar, särskilt kontaktspårningsappar för COVID-19; (ii.) utforskningen av den potentiella inverkan på patienternas integritet i samband med cyberkrig; (iii.) identifiering och modellering av integritetsskador efter ett dataintrång i vården; och (iv.) en bedömning av huruvida integritetsskador förbättrar bedömningar av integritetsrisker. För att uppnå detta omfattar avhandlingen empirisk forskning, djupgående dokumentanalys (i form av narrativa granskningar och en systematisk litteraturgransking) och ett kvalitativt tillvägagångssätt i form av en semistrukturerad intervju och en riskbedömningsövning. 

Vi konstaterade att digital hälsoappar som utvecklats i all hast har flera säkerhets- och integritetsrisker som kan påverka vårdkonsumenternas integritet. Dessutom medför integreringen av informations- och kommunikationsteknik (IKT) i hälso- och sjukvården risker, även om den är fördelaktig. Statligt sponsrade angripare kan utnyttja dessa risker, vilket leder till negativa integritetseffekter (integritetsskador) för användarna av hälso- och sjukvårdstjänster. Vi identifierar faktiska konsekvenser för integriteten och använder detta för att modellera integritetsskador genom att modifiera en PRA-metod. Förutom att identifiera metoder för att utvärdera konsekvensbedömningar avseende integritet (PIAs) och riskbedömning av integritetsskydd (PRAs), utvärderar vi täckningen av integritetsskador inom dessa befintliga metoder. Dessutom får vi insikt i operationaliseringen av integritetsskador från praktiker och hur detta förbättrar riskbedömning av integritetsskydd.

 Bland de viktigaste bidragen är att forskningen skapar en medvetenhet om de risker som är förknippade med bristande dataskyddsmekanismer och dataintrång samt deras inverkan på patienternas integritet. Dessutom genomfördes en omfattande systematisk litteraturgranskning av konsekvensbedömningar avseende integritet och riskbedömning av integritetsskydd, vilket ledde till att vi fokuserade på att operationalisera integritetsskador som kan integreras i riskbedömning av integritetsskydd för att bedöma hur vårdkonsumenter integritet påverkas. Detta innebär att integritetsexperter och IT-personal inom hälso- och sjukvården kan informeras och vägledas i förståelsen av integritetsskador under bedömningen av integritetsrisker. Detta säkerställer att lämpliga skyddsåtgärder finns på plats för att förhindra att faktiska integritetsskador inträffar.

Abstract [en]

e-Health, such as mobile health (mHealth) and Health Information Systems (HIS), benefits healthcare consumers and professionals. However, it also poses potential privacy risks, as security, privacy, and human factors remain challenges in the rapid digitization of healthcare. Considering an impact assessment of the planned processing helps identify and prevent privacy risks early in digital health technologies. When such risks are exploited, they can result in various privacy harms to individuals, including physical, psychological, financial, reputational, and societal harms. This thesis focuses on analyzing security and privacy risks in health-related systems. It incorporates empirical research, in-depth document analysis, and a qualitative approach in terms of a semi-structured interview and a privacy risk assessment exercise. Key contributions include raising awareness of the risks posed by inadequate data protection mechanisms, and data breaches as well as their impact on patient privacy. Additionally, we operationalize privacy harms to assess impact on healthcare consumers' privacy. This helps privacy experts and IT practitioners in healthcare understand and address privacy harms during risk assessments, ensuring safeguards are in place to prevent actual privacy harms.

Place, publisher, year, edition, pages
Karlstads universitet, 2024
Series
Karlstad University Studies, ISSN 1403-8099 ; 2024:34
Keywords
Privacy, Data Protection, Security, e-Health, mHealth, Risk Analysis, Privacy Harms
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-101713 (URN)10.59217/kyvu3874 (DOI)978-91-7867-500-5 (ISBN)978-91-7867-501-2 (ISBN)
Public defence
2024-11-27, 9C203, Universitetsgatan 2, Karlstad, 09:30 (English)
Opponent
Supervisors
Available from: 2024-11-05 Created: 2024-09-25 Last updated: 2025-03-20Bibliographically approved

Open Access in DiVA

fulltext(5462 kB)370 downloads
File information
File name FULLTEXT01.pdfFile size 5462 kBChecksum SHA-512
108665b05a9eec19ec8ac30793878cdc90a34f9831ebc7c7b2cf8c2544a4b9abed0deda72129a30df64d3a68d18512827f554afdd7a2f2b86f850af52b837842
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Wairimu, SamuelIwaya, Leonardo HFritsch, LotharLindskog, Stefan

Search in DiVA

By author/editor
Wairimu, SamuelIwaya, Leonardo HFritsch, LotharLindskog, Stefan
By organisation
Department of Mathematics and Computer Science (from 2013)
In the same journal
IEEE Access
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 370 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 418 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf