Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Failure analyses and wear mechanisms of rock drill rods: a case study
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013).ORCID iD: 0000-0002-9441-2502
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Physics (from 2013). Karlstad Univ, Dept Engn & Phys, SE-65888 Karlstad, Sweden..ORCID iD: 0000-0001-6029-2613
2019 (English)In: Engineering Failure Analysis, ISSN 1350-6307, E-ISSN 1873-1961, Vol. 102, p. 69-78Article in journal (Refereed) Published
Abstract [en]

Rock drill rod failure is a big concern for the mining industry. The tough conditions required to break down rock material into small pieces subject rock drill components to high mechanical stresses and corrosion that lead to the failure of the drill rods. This paper describes a detailed examination of rock drill rods failed during field operations. The drill rods were manufactured from a high strength, hardened and tempered steel 22NiCrMo12-5F, carburized for better surface performance. The examination was carried out by means of light optical microscopy and scanning electron microscope. Microhardness profiles were performed for the studied rods. The focus of the present case study was to characterize the failure mechanisms and surface damages of the failed drill rods. The examined drill rods failed due to the initiation and propagation of fatigue microcracks at the outer surface of the thread. Surface cracks propagated to a certain crack length until the fracture toughness of the drill rod was exceeded and the final failure occurred. Multiple short cracks were observed on the fracture surface of the failed rods. The observed cracks propagated perpendicularly to the impacting direction towards the inner surface of the rods. Two different crack initiation mechanisms were observed in the present study, crack initiation from pits and crack initiation from severe plastic surface deformation. Sliding and abrasive wear damage, severe plastic deformation and pitting corrosion were observed on the threaded portion of the rods. Sliding wear was the most common wear damage mechanism observed in the thread joint. Pitting corrosion and severe plastic deformation, made the worn surface susceptible to crack initiation.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD , 2019. Vol. 102, p. 69-78
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kau:diva-72222DOI: 10.1016/j.engfailanal.2019.04.028ISI: 000467804800007OAI: oai:DiVA.org:kau-72222DiVA, id: diva2:1319413
Available from: 2019-05-31 Created: 2019-05-31 Last updated: 2019-06-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Mussa, AbdulbasetKrakhmalev, PavelBergström, Jens

Search in DiVA

By author/editor
Mussa, AbdulbasetKrakhmalev, PavelBergström, Jens
By organisation
Department of Engineering and Physics (from 2013)
In the same journal
Engineering Failure Analysis
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf