Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Clustering-based separation of media transfers in DPI-classified cellular video and VoIP traffic
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). (DISCO)ORCID-id: 0000-0003-3461-7079
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). (DISCO)ORCID-id: 0000-0001-7311-9334
2018 (engelsk)Inngår i: 2018 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, 2018Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Identifying VoIP and video traffic is often useful in the context of managing a cellular network, and to perform such traffic classification deep packet inspection (DPI) approaches are often used. Commercial DPI classifiers do not necessarily differentiate between, for example, YouTube traffic that arises from browsing inside the YouTube app, and traffic arising from the actual viewing of a YouTube video. Here we apply unsupervised clustering methods on such cellular DPI-labeled VoIP and video traffic to identify the characteristic behavior of the two sub-groups of media-transfer and non media-transfer flows. The analysis is based on a measurement campaign performed inside the core network of a commercial cellular operator, collecting data for more than two billion packets in 40+ million flows. A specially instrumented commercial DPI appliance allows the simultaneous collection of per packet information in addition to the DPI classification output. We show that the majority of flows falls into clusters that are easily identifiable as belonging to one of the traffic sub-groups, and that a surprising majority of DPIlabeled VoIP and video traffic is non-media related.

sted, utgiver, år, opplag, sider
IEEE, 2018.
Serie
IEEE Wireless Communications and Networking Conference. Proceedings, ISSN 1525-3511, E-ISSN 1558-2612
Emneord [en]
Media, YouTube, Clustering algorithms, Cryptography, Downlink, Engines, Uplink
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:kau:diva-67798DOI: 10.1109/WCNC.2018.8377027ISI: 000435542400081ISBN: 978-1-5386-1734-2 (digital)ISBN: 978-1-5386-1735-9 (tryckt)OAI: oai:DiVA.org:kau-67798DiVA, id: diva2:1220569
Konferanse
2018 IEEE Wireless Communications and Networking Conference (WCNC), 15-18 April 2018, Barcelona, Spain.
Prosjekter
HITSTilgjengelig fra: 2018-06-19 Laget: 2018-06-19 Sist oppdatert: 2019-04-05bibliografisk kontrollert

Open Access i DiVA

fulltext(558 kB)82 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 558 kBChecksum SHA-512
1e08e0cb5a7deba2554c648ff9d106bcc36f3b15ef9a54acda8dcef6abf136613a89d80c7215dd4667e24978b085f3fd8c382a4e60d08a9e46366f54944e8d70
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Garcia, JohanBrunström, Anna

Søk i DiVA

Av forfatter/redaktør
Garcia, JohanBrunström, Anna
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 82 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 210 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf