Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Image Classification, Deep Learning and Convolutional Neural Networks: A Comparative Study of Machine Learning Frameworks
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap.
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap.
2017 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

The use of machine learning and specifically neural networks is a growing trend in software development, and has grown immensely in the last couple of years in the light of an increasing need to handle big data and large information flows. Machine learning has a broad area of application, such as human-computer interaction, predicting stock prices, real-time translation, and self driving vehicles. Large companies such as Microsoft and Google have already implemented machine learning in some of their commercial products such as their search engines, and their intelligent personal assistants Cortana and Google Assistant.

The main goal of this project was to evaluate the two deep learning frameworks Google TensorFlow and Microsoft CNTK, primarily based on their performance in the training time of neural networks. We chose to use the third-party API Keras instead of TensorFlow's own API when working with TensorFlow. CNTK was found to perform better in regards of training time compared to TensorFlow with Keras as frontend. Even though CNTK performed better on the benchmarking tests, we found Keras with TensorFlow as backend to be much easier and more intuitive to work with. In addition, CNTKs underlying implementation of the machine learning algorithms and functions differ from that of the literature and of other frameworks. Therefore, if we had to choose a framework to continue working in, we would choose Keras with TensorFlow as backend, even though the performance is less compared to CNTK.

sted, utgiver, år, opplag, sider
2017. , s. 79
Emneord [en]
machine learning, deep learning, neural networks, convolutional neural networks, tensorflow, cntk, keras, frameworks
Emneord [sv]
maskininlärning, neurala nätverk, ramverk
HSV kategori
Identifikatorer
URN: urn:nbn:se:kau:diva-55129OAI: oai:DiVA.org:kau-55129DiVA, id: diva2:1111144
Eksternt samarbeid
ÅF
Fag / kurs
Computer Science
Utdanningsprogram
Computer Science
Veileder
Examiner
Tilgjengelig fra: 2017-06-20 Laget: 2017-06-17 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

fulltext(748 kB)916 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 748 kBChecksum SHA-512
b9e2901259fe5ba555c1326084ebc9b8d77f3d7d515e92a0340557c0ce5363443419dd2856949df38f51603d788b6dd58b268d46cf7a6612a64bf11f1f01b5fe
Type fulltextMimetype application/pdf
Arkivfil(728 kB)277 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 728 kBChecksum SHA-512
adc9324c38ce4a2c8de7417179248bddfd9043bd2fc70724fae5e995859d06e36386c720d2ca2ce1f5300ccf9c959d4ee69a93d1915e53492d1eb772e5fd20eb
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Airola, RasmusHager, Kristoffer
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1193 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 3857 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf