Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Finding lower bounds of localization with noisy measurements using genetic algorithms
The University of Sydney, Australia.
The University of Sydney, Australia.ORCID-id: 0000-0001-9194-010X
The University of Sydney, Sydney, Australia.
2011 (Engelska)Ingår i: Proceedings of the first ACM international symposium on Design and analysis of intelligent vehicular networks and applications (DIVANet '11), Miami, Florida, USA: Association for Computing Machinery (ACM), 2011, s. 47-54Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Vehicular Ad-Hoc Networks (VANETs) are wireless networks with mobile nodes (vehicles) which connect in an ad-hoc manner. Many vehicles use the Global Positioning System (GPS) to provide their locations. However the inaccuracy of GPS devices leads to some vehicles incorrectly assuming they are located at different positions and sometimes on different roads. VANETs can be used to increase the accuracy of each vehicle's computed location by allowing vehicles to share information regarding the measured distances to neighbouring vehicles. This paper looks at finding how much improvement can be made given the erroneous measurements present in the system. An evolutionary algorithm is used to evolve instances of parameters used by the VLOCI2 algorithm, also presented in this paper, to find instances which minimises the inaccuracy in computed locations. Simulation results show a definite improvement in location accuracy and lower bounds on how much improvement is possible is inferred.

Ort, förlag, år, upplaga, sidor
Miami, Florida, USA: Association for Computing Machinery (ACM), 2011. s. 47-54
Nyckelord [en]
vehicular ad hoc networks; localization; GPS; distance measurements; location improve/refinement; genetic algorithm; localization lower bounds
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
URN: urn:nbn:se:kau:diva-46091ISI: 000303493700007ISBN: 978-1-4503-0904-2 (tryckt)OAI: oai:DiVA.org:kau-46091DiVA, id: diva2:970900
Konferens
ACM international symposium on Design and analysis of intelligent vehicular networks and applications
Tillgänglig från: 2016-09-15 Skapad: 2016-09-15 Senast uppdaterad: 2019-06-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Taheri, Javid

Sök vidare i DiVA

Av författaren/redaktören
Taheri, Javid
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 110 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf