Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Remote Sensing of Urbanization and Environmental Impacts
KTH Royal Institute of Technology.ORCID-id: 0000-0002-6140-2922
2016 (Engelska)Doktorsavhandling, monografi (Övrigt vetenskapligt)
Abstract [en]

This thesis aims to establish analytical frameworks to map urban growth patterns with spaceborne remote sensing data and to evaluate environmental impacts through Landscape Metrics and Ecosystem Services. Urbanization patterns at regional scale were evaluated in China's largest urban agglomerations and at metropolitan scale in Shanghai, Stockholm and Beijing using medium resolution optical satellite data. High-resolution data was used to investigate changes in Shanghai’s urban core. The images were co-registered and mosaicked. Tasseled Cap transformations and texture features were used to increase class separabilities prior to pixel-based Random Forest and SVM classifications. Urban land cover in Shanghai and Beijing were derived through object-based SVM classification in KTH-SEG. After post-classification refinements, urbanization indices, Ecosystem Services and Landscape Metrics were used to quantify and characterize environmental impact. Urban growth was observed in all studies. China's urban agglomerations showed most prominent urbanization trends. Stockholm’s urban extent increased only little with minor environmental implications. On a regional/metropolitan scale, urban expansion progressed predominately at the expense of agriculture. Investigating urbanization patterns at higher detail revealed trends that counteracted negative urbanization effects in Shanghai's core and Beijing's urban-rural fringe. Beijing's growth resulted in Ecosystem Services losses through landscape structural changes, i.e. service area decreases, edge contamination or fragmentation. Methodological frameworks to characterize urbanization trends at different scales based on remotely sensed data were developed. For detailed urban analyses high-resolution data are recommended whereas medium-resolution data at metropolitan/regional scales is suggested. The Ecosystem Service concept was extended with Landscape Metrics to create a more differentiated picture of urbanization effects.​

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2016. , s. 121
Serie
TRITA-SOM, ISSN 1653-6126 ; 2016:01
Nyckelord [en]
Remote Sensing, Urbanization, Land Use/Land Cover (LULC), Environmental Impact, Landscape Metrics, Ecosystem Services
Nationell ämneskategori
Fjärranalysteknik
Forskningsämne
Geomatik
Identifikatorer
URN: urn:nbn:se:kau:diva-75109ISBN: 978-91-7595-852-1 (tryckt)OAI: oai:DiVA.org:kau-75109DiVA, id: diva2:1358133
Opponent
Handledare
Tillgänglig från: 2019-10-18 Skapad: 2019-10-07 Senast uppdaterad: 2019-10-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Fulltext

Personposter BETA

Haas, Jan

Sök vidare i DiVA

Av författaren/redaktören
Haas, Jan
Fjärranalysteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 5 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf