Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Handling Packet Losses in Cloud-Based Application Traffic
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).ORCID-id: 0000-0002-8731-2482
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).ORCID-id: 0000-0001-7311-9334
2019 (Engelska)Ingår i: Proceedings of the 9th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, SciTePress, 2019, s. 111-119Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Internet traffic is comprised of data flows from various applications with unique traffic characteristics. For many cloud applications, end-to-end latency is a primary factor affecting the perceived user experience. As packet losses cause delays in the communication they impact user experience, making efficient handling of packet losses an important function of transport layer protocols. Multipath TCP (MPTCP) is a modification to TCP that enables simultaneous use of several paths for a TCP flow. MPTCP is known to improve throughput. However, the performance of MPTCP is not optimal when handling certain loss scenarios. Efficient packet loss recovery is thus important to achieve desirable flow completion times for interactive cloud-based applications. In this paper we evaluate the performance of MPTCP in handling tail losses using traffic traces from various cloud-based applications. Tail losses, losses that occur at the end of a flow or traffic burst, are particularly challenging from a latency perspective as they are difficult to detect and recover in a timely manner. Tail losses in TCP are handled by using a tail loss probe (TLP) mechanism which was adapted to MPTCP from TCP. We investigate the performance of TLP in MPTCP, comparing the standard implementation to a recently proposed, less conservative approach. Our experimental results show that a less conservative implementation of TLP performs significantly better than the standard implementation in handling tail losses, reducing the average burst completion time of cloud based applications when tail loss occurs by up to 50% in certain cases.

Ort, förlag, år, upplaga, sidor
SciTePress, 2019. s. 111-119
Nyckelord [en]
Multipath TCP, Cloud Applications, Latency, Loss Recovery, Performance Evaluation, Measurements.
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
URN: urn:nbn:se:kau:diva-70749DOI: 10.5220/0007723801110119Scopus ID: 2-s2.0-85067484825ISBN: 978-989-758-365-0 (tryckt)OAI: oai:DiVA.org:kau-70749DiVA, id: diva2:1290501
Konferens
9th International Conference on Cloud Computing and Services Science, CLOSER 2019 2-4 May, Heraklion, Greece
Tillgänglig från: 2019-02-20 Skapad: 2019-02-20 Senast uppdaterad: 2019-07-10Bibliografiskt granskad
Ingår i avhandling
1. Evaluating and Reducing Multipath Transport Latency
Öppna denna publikation i ny flik eller fönster >>Evaluating and Reducing Multipath Transport Latency
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Access to the Internet is a very significant part of everyday life with increasing online services such as news delivery, banking, gaming, audio and high quality movies. Applications require different transport guarantees with some requiring higher bandwidth and others low latency. Upgrading access link capacity does not guarantee faster access to the Internet as it offers higher bandwidth but may not offer low latency. With increasing number of mobile devices supporting more than one access technologies (e.g., WLAN, 3G, 4G,..), there is a need to analyse the impact of using multiple such technologies at the same time. Legacy transport protocols such as TCP or SCTP are only able to connect to one access network at a time to create an end-to-end connection. When more than one access technology is used, there may be a large difference in the data rate offered by each technology. This asymmetry might impact latency sensitive applications by creating out of order delivery. In this thesis, we focus on the latency aspect of multipath transport protocol performance. We consider CMT-SCTP and Multipath TCP as available multipath protocols that were designed for exploiting multiple paths for better throughput and reliability. We consider various real world traffic scenarios such as Video, Gaming and Web traffic to measure end-to-end latency. We perform simulations, emulations and experiments using heterogeneous network settings involving access networks with different bandwidth, delay and loss characteristics. MPTCP performs better in terms of latency than CMT-SCTP and TCP in certain scenarios where available paths are symmetric. However, MPTCP does not perform well in asymmetric scenarios with latency sensitive traffic. This analysis provides insights in to various areas of improvement in MPTCP such as scheduling and loss recovery to achieve low latency. We further focus on packet loss recovery in MPTCP for specific cases of tail losses to reduce latency. Tail losses are the losses that occur at the end of a packet stream. Recovering such losses is of higher significance to latency sensitive applications. We propose a modification to the use of TLP, a mechanism in TCP for tail loss recovery. We evaluate the performance of proposed TLP modification, first using emulations and with real world network experiments. Our results show significant improvements in latency for specific loss scenarios in emulations and up to 50% improvement in experiments.

Abstract [en]

With an increasing number of mobile devices supporting more than one access technologies (e.g., WLAN, 3G, 4G), there is a need to analyse the impact of using multiple such technologies at the same time. The inherent asymmetry among these technologies might affect latency sensitive applications by creating out of order delivery. In this thesis, we consider CMT-SCTP and Multipath TCP as available multipath protocols designed to exploit multiple paths for better throughput and reliability.  We perform simulations, emulations and experiments using various real-world traffic scenarios such as Video, Gaming and Web traffic to measure end-to-end latency. MPTCP performs better in terms of latency than CMT-SCTP and TCP in certain scenarios where available paths are symmetric. This analysis provides insights into various areas of improvement in MPTCP such as scheduling and loss recovery to achieve low latency. We further focus on packet loss recovery in MPTCP for specific cases of tail losses (losses that occur at the end of a packet stream) to reduce latency. This thesis presents a modification to the use of Tail Loss Probe (TLP) in MPTCP that provides improvements in latency for specific loss scenarios in emulations and upto 50% improvement in experiments.

Ort, förlag, år, upplaga, sidor
Karlstad: Karlstads universitet, 2019. s. 103
Serie
Karlstad University Studies, ISSN 1403-8099 ; 2019:5
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
urn:nbn:se:kau:diva-71223 (URN)978-91-7867-001-7 (ISBN)978-91-7867-006-2 (ISBN)
Presentation
2019-03-21, 1B306, 10:30 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-03-06 Skapad: 2019-02-20 Senast uppdaterad: 2019-03-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttp://insticc.org/node/TechnicalProgram/closer/presentationDetails/77238

Personposter BETA

Yedugundla, KiranHurtig, PerBrunström, Anna

Sök vidare i DiVA

Av författaren/redaktören
Yedugundla, KiranHurtig, PerBrunström, Anna
Av organisationen
Institutionen för matematik och datavetenskap (from 2013)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 77 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf