Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
PSO-DS: a scheduling engine for scientific workflow managers
University of Sydney, Australia; CSIRO, Data61, Canberra, ACT, Australia.
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).ORCID-id: 0000-0001-9194-010X
Newcastle University, England ; CSIRO, Data61, Canberra, ACT, Australia.
University of Sydney, Australia.ORCID-id: 0000-0002-3090-1059
2017 (Engelska)Ingår i: Journal of Supercomputing, ISSN 0920-8542, E-ISSN 1573-0484, Vol. 73, nr 9, s. 3924-3947Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cloud computing, an important source of computing power for the scientific community, requires enhanced tools for an efficient use of resources. Current solutions for workflows execution lack frameworks to deeply analyze applications and consider realistic execution times as well as computation costs. In this study, we propose cloud user-provider affiliation (CUPA) to guide workflow's owners in identifying the required tools to have his/her application running. Additionally, we develop PSO-DS, a specialized scheduling algorithm based on particle swarm optimization. CUPA encompasses the interaction of cloud resources, workflow manager system and scheduling algorithm. Its featured scheduler PSO-DS is capable of converging strategic tasks distribution among resources to efficiently optimize makespan and monetary cost. We compared PSO-DS performance against four well-known scientific workflow schedulers. In a test bed based on VMware vSphere, schedulers mapped five up-to-date benchmarks representing different scientific areas. PSO-DS proved its efficiency by reducing makespan and monetary cost of tested workflows by 75 and 78%, respectively, when compared with other algorithms. CUPA, with the featured PSO-DS, opens the path to develop a full system in which scientific cloud users can run their computationally expensive experiments.

Ort, förlag, år, upplaga, sidor
2017. Vol. 73, nr 9, s. 3924-3947
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
URN: urn:nbn:se:kau:diva-65834DOI: 10.1007/s11227-017-1992-zISI: 000407864100010OAI: oai:DiVA.org:kau-65834DiVA, id: diva2:1177507
Tillgänglig från: 2018-01-25 Skapad: 2018-01-25 Senast uppdaterad: 2018-07-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Taheri, Javid

Sök vidare i DiVA

Av författaren/redaktören
Taheri, JavidZomaya, Albert Y.
Av organisationen
Institutionen för matematik och datavetenskap (from 2013)
I samma tidskrift
Journal of Supercomputing
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 32 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf