Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Kinetic modeling of economic games with large number of participants
Karlstads universitet, Fakulteten för teknik- och naturvetenskap, Avdelningen för matematik. (Kinetisk teori)
Karlstads universitet, Fakulteten för teknik- och naturvetenskap, Avdelningen för matematik. (Kinetisk teori)
2011 (Engelska)Ingår i: Kinetic and Related Models, ISSN 1937-5093, Vol. 4, nr 1, s. 169-185Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

                 We study a Maxwell kinetic model of socio-economic behavior introduced in the paper A. V. Bobylev, C. Cercignani and I. M. Gamba, Commun. Math. Phys., 291 (2009), 599-644. The model depends on three non-negative parameters where is the control parameter. Two other parameters are fixed by market conditions. Self-similar solution of the corresponding kinetic equation for distribution of wealth is studied in detail for various sets of parameters. In particular, we investigate the efficiency of control. Some exact solutions and numerical examples are presented. Existence and uniqueness of solutions are also discussed.

Ort, förlag, år, upplaga, sidor
American Institute of Mathematical Sciences, 2011. Vol. 4, nr 1, s. 169-185
Nyckelord [en]
Maxwell models, self-similar solutions, distribution of wealth, market economy
Nationell ämneskategori
Matematik
Forskningsämne
Matematik
Identifikatorer
URN: urn:nbn:se:kau:diva-8711DOI: 10.3934/krm.2011.4.169ISI: 000286926200010OAI: oai:DiVA.org:kau-8711DiVA, id: diva2:453607
Tillgänglig från: 2011-11-03 Skapad: 2011-11-03 Senast uppdaterad: 2012-12-04Bibliografiskt granskad
Ingår i avhandling
1. Some Problems in Kinetic Theory and Applications
Öppna denna publikation i ny flik eller fönster >>Some Problems in Kinetic Theory and Applications
2011 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis consists of four papers. the first is devoted to discrete velocity models, the second to hydrodynamic equation beyond Navier-Stokes level, the third to a multi-linear Maxwell model for economic or social dynamics and the fourth is devoted to a function related to the Riemann zeta-function.

In Paper 1, we consider the general problem of construction and classification of normal, i.e. without spurious invariants, discrete velocity models (DVM) of the classical Boltzman equation. We explain in detail how this problem can be solved and present a complete classification of normal plane DVMs with relatively small number n of velocities (n≤10). Some results for models with larger number of velocities are also presented.

In Paper 2, we discuss hydrodynamics at the Burnett level. Since the Burnett equations are ill-posed, we describe how to make a regularization of these. We derive the well-posed generalized Burnett equations (GBEs) and discuss briefly an optimal choice of free parameters and consider a specific version of these equations. Finally we prove linear stability for GBE and present some numerical result on the sound propagationbased on GBEs.

In Paper 3, we study a Maxwell kinetic model of socio-economic behavior. The model can predict a time dependent distribution of wealth among the participants in economic games with an arbitrary, but sufficiently large, number of players. The model depends on three different positive parameters {γ,q,s} where s and q are fixed by market conditions and γ is a control parameter. In particular, we investigate the efficiency of control. Some exact solutions and numerical examples are presented.

In Paper 4, we study a special function u(s,x), closely connected to the Riemann zeta-function ζ(s), where s is a complex number. We study in detail the properties of u(s,x) and in particular the location of its zeros s(x), for various x≥0. For x=0 the zeros s(0) coincide with non-trivial zeros of ζ(s). We perform a detailed numerical study of trajectories of various zeros s(x) of u(s,x).

Ort, förlag, år, upplaga, sidor
Karlstad: Karlstad University, 2011. s. 22
Serie
Karlstad University Studies, ISSN 1403-8099 ; 2011:52
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Matematik
Identifikatorer
urn:nbn:se:kau:diva-8498 (URN)978-91-7063-388-1 (ISBN)
Disputation
2011-12-01, 21A 342, Karlstads universitet, Karlstad, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2011-11-07 Skapad: 2011-10-10 Senast uppdaterad: 2011-11-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltexthttp://aimsciences.org/journals/displayArticles.jsp?paperID=5860

Person

Bobylev, AlexanderWindfäll, Åsa

Sök vidare i DiVA

Av författaren/redaktören
Bobylev, AlexanderWindfäll, Åsa
Av organisationen
Avdelningen för matematik
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 244 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf