Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Stationary iteration methods for solving 3D electromagnetic scattering problems
Moscow State Tech Univ Radio Engn & Automat, Moscow 117648, Russia..
Karlstads universitet, Institutionen för ingenjörsvetenskap, fysik och matematik.ORCID-id: 0000-0002-2691-2820
Chuo Univ, Bunkyo Ku, Tokyo 1128551, Japan.
2013 (engelsk)Inngår i: Applied Mathematics and Computation, ISSN 0096-3003, E-ISSN 1873-5649, Vol. 222, s. 107-122Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Generalized Chebyshev iteration (GCI) applied for solving linear equations with nonselfadjoint operators is considered. Sufficient conditions providing the convergence of iterations imposed on the domain of localization of the spectrum on the complex plane are obtained. A minimax problem for the determination of optimal complex iteration parameters is formulated. An algorithm of finding an optimal iteration parameter in the case of arbitrary location of the operator spectrum on the complex plane is constructed for the generalized simple iteration method. The results are applied to numerical solution of volume singular integral equations (VSIEs) associated with the problems of the mathematical theory of wave diffraction by 3D dielectric bodies. In particular, the domain of the spectrum location is described explicitly for low-frequency scattering problems and in the general case. The obtained results are discussed and recommendations concerning their applications are given. (C) 2013 Elsevier Inc. All rights reserved.

sted, utgiver, år, opplag, sider
2013. Vol. 222, s. 107-122
Emneord [en]
Generalized Chebyshev iteration, Optimal iteration parameters, Localization of the spectrum, Volume singular integral equations
HSV kategori
Forskningsprogram
Matematik
Identifikatorer
URN: urn:nbn:se:kau:diva-38586DOI: 10.1016/j.amc.2013.07.019ISI: 000326877300011OAI: oai:DiVA.org:kau-38586DiVA, id: diva2:875076
Tilgjengelig fra: 2015-11-30 Laget: 2015-11-23 Sist oppdatert: 2017-12-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Shestopalov, Youri

Søk i DiVA

Av forfatter/redaktør
Shestopalov, Youri
Av organisasjonen
I samme tidsskrift
Applied Mathematics and Computation

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 81 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf