Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Embedding Theorems for Mixed Norm Spaces and Applications
Karlstads universitet, Fakulteten för teknik- och naturvetenskap, Avdelningen för matematik.
2010 (engelsk)Doktoravhandling, monografi (Annet vitenskapelig)
Abstract [en]

This thesis is devoted to the study of mixed norm spaces that arise in connection with embeddings of Sobolev and Besov type spaces. We study different structural, integrability, and smoothness properties of functions satisfying certain mixed norm conditions. Conditions of this type are determined by the behaviour of linear sections of functions. The work in this direction originates in a paper due to Gagliardo (1958), and was further developed by Fournier (1988), by Blei and Fournier (1989), and by Kolyada (2005).

Here we continue these studies. We obtain some refinements of known embeddings for certain mixed norm spaces introduced by Gagliardo, and we study general properties of these spaces. In connection with these results, we consider a scale of intermediate mixed norm spaces, and prove intrinsic embeddings in this scale.

We also consider more general, fully anisotropic, mixed norm spaces. Our main theorem states an embedding of these spaces to Lorentz spaces. Applying this result, we obtain sharp embedding theorems for anisotropic Sobolev-Besov spaces, and anisotropic fractional Sobolev spaces. The methods used are based on non-increasing rearrangements, and on estimates of sections of functions and sections of sets. We also study limiting relations between embeddings of spaces of different type. More exactly, mixed norm estimates enable us to get embedding constants with sharp asymptotic behaviour. This gives an extension of the results obtained for isotropic Besov spaces by Bourgain, Brezis, and Mironescu, and for anisotropic Besov spaces by Kolyada.

We study also some basic properties (in particular the approximation properties) of special weak type spaces that play an important role in the construction of mixed norm spaces, and in the description of Sobolev type embeddings.

In the last chapter, we study mixed norm spaces consisting of functions that have smooth sections. We prove embeddings of these spaces to Lorentz spaces. From this result, known properties of Sobolev-Liouville spaces follow.

sted, utgiver, år, opplag, sider
Karlstad: Karlstad University , 2010. , s. 134
Serie
Karlstad University Studies, ISSN 1403-8099 ; 2010:16
Emneord [en]
mixed norms, rearrangements, modulus of continuity, embeddings, Sobolev spaces, Besov spaces, Lorentz spaces
HSV kategori
Forskningsprogram
Matematik
Identifikatorer
URN: urn:nbn:se:kau:diva-5646ISBN: 978-91-7063-306-5  (tryckt)OAI: oai:DiVA.org:kau-5646DiVA, id: diva2:319294
Disputas
2010-09-01, 21A 342, Karlstads universitet, Karlstad, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2010-05-28 Laget: 2010-05-14 Sist oppdatert: 2011-10-04bibliografisk kontrollert

Open Access i DiVA

fulltekst(740 kB)1381 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 740 kBChecksum SHA-512
e7602180d9690c253a7a7856e3eb4ed22756edcf61a8cb35fe17f6ae048278d4e818eaaa6b21903ec58b20df0551d7a2b680c638a92a414d9a2218b916fc9087
Type fulltextMimetype application/pdf

Personposter BETA

Algervik, Robert

Søk i DiVA

Av forfatter/redaktør
Algervik, Robert
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1381 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 547 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf