Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Efficient management of potato fields: Integrating ground and UAV vegetation indexes for optimal mechanical planting parameters
University of Sousse, Tunisia.
University of Sousse, Tunisia.
National Institute of Scientific Research (INRS), Canada.
Potato and Artichoke Technical Center (CTPTA),Tunisia.
Vise andre og tillknytning
2025 (engelsk)Inngår i: EURO-MEDITERRANEAN JOURNAL FOR ENVIRONMENTAL INTEGRATION, ISSN 2365-6433Artikkel i tidsskrift (Fagfellevurdert) Epub ahead of print
Abstract [en]

In the Mediterranean area, the potato is a crucial crop and can be cultivated throughout the year. However, environmental and operational issues related to warming, such as mechanical planting settings may negatively effect on potato production and tuber quality, endangering the Mediterranean region's productivity. The research aim was to evaluate how various combinations of planting parameters affected potato yield in the Mediterranean region, integrate UAV-based RGB imaging with ground-level sensors, identify optimal planting combinations, and compare the effectiveness of UAVs versus ground sensors. This study evaluated 24 potato crop plots (Solanum tuberosum L.), comparing 8 different treatment combinations of planting parameters: interplant spacing (cm)*Interrow spacing (cm)*Planting depth (cm). The specific combinations were as follows: 1 (28*90*10), 2 (35*90*10), 3 (28*90*20), 4 (35*90*20), 5 (28*100*10), 6 (35*100*10), 7 (28*100*20), 8 (35*100*20), 9 (control: 32*80*15). Agricultural drone (UAV) provided with image sensor and field cameras were used to measure canopy vegetation and leaf area indexes. The ground and UAV RGB vegetation indices indicated a strong correlative among yield and vegetative indexes. Yield variation from the proximal, aerial, and combined datasets was explained by multivariate regression models in 69.4, 87.9, and 88.4% accordingly. The close resemblance among the proximal and aerial results in this study underscored the output advantages of RGB UAV HTPPs and demonstrates how HTPPs can be used to evaluate the effects of various planting features on optimal planting conditions. Future research should focus on validating these findings across different regions, incorporating advanced sensors, conducting long-term monitoring, performing economic analyses, and applying the methodology to other crops to enhance agricultural productivity and food security.

sted, utgiver, år, opplag, sider
Springer, 2025.
Emneord [en]
Potato yield, Mechanical planting, Phenotyping, UAV/drone, Proximal sensor, RGB indexes, LAI, NGRDI
HSV kategori
Forskningsprogram
Miljö- och energisystem
Identifikatorer
URN: urn:nbn:se:kau:diva-102521DOI: 10.1007/s41207-024-00705-xISI: 001366654400001Scopus ID: 2-s2.0-85210593363OAI: oai:DiVA.org:kau-102521DiVA, id: diva2:1922939
Tilgjengelig fra: 2024-12-19 Laget: 2024-12-19 Sist oppdatert: 2025-03-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Mohammadi, Ali

Søk i DiVA

Av forfatter/redaktør
Mohammadi, Ali
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 18 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf