Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multi-Objective Microgrid Control Using Deep Reinforcement Learning
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). (Disco)ORCID-id: 0000-0002-5276-1763
Mohamed bin Zayed University of Artificial Intelligence, the United Arab Emirates.
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). (Disco)ORCID-id: 0000-0001-7547-8111
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). (Disco)ORCID-id: 0000-0002-9446-8143
2024 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

Optimizing renewable energy usage in smart microgrids that contain photovoltaic production and battery storage is important due to the potential to reduce overall CO2 emissions and thus lead to more environmental friendly energy systems. However, due to the complex nature of energy management in smart grids and the volatile nature of energy production from PV systems, the problem is complex to solve. In this work we aim to optimize the energy in a microgrid comprising six houses using a digital twin based approach based on Deep Reinforcement Learning. We develop a Soft Actor-Critic (SAC) agent to address this intricate challenge, with the aim to simultaneously reduce emissions, maintain user comfort, while maximizing grid efficiency and resiliency to cope with spurious grid outages. We propose and evaluate different reward functions that guide the agent in finding its optimal policy. Furthermore, we discuss the implications of our results and outline potential future steps, envisioning ongoing refinement and advancements in our pursuit of optimal solutions for the complex interplay of severaal objectives in microgrid management.

sted, utgiver, år, opplag, sider
Karlstads universitet, 2024.
Serie
Karlstad University Studies, ISSN 1403-8099 ; 2024:21
Emneord [en]
Renewable Energy Communities, Deep Reinforcement Learning, Energy Management
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:kau:diva-100855OAI: oai:DiVA.org:kau-100855DiVA, id: diva2:1880614
Prosjekter
AI4ENERGY
Forskningsfinansiär
Swedish Energy Agency, 50246-1Tilgjengelig fra: 2024-07-01 Laget: 2024-07-01 Sist oppdatert: 2025-02-25

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Nammouchi, AmalRamaswamy, ArunselvanKassler, Andreas

Søk i DiVA

Av forfatter/redaktør
Nammouchi, AmalRamaswamy, ArunselvanKassler, Andreas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 324 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf