Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Private Training Approaches - A Primer
Linköping University, Sweden.ORCID-id: 0000-0001-9535-6621
Karlstads universitet, Fakulteten för humaniora och samhällsvetenskap (from 2013), Handelshögskolan (from 2013).ORCID-id: 0000-0002-6509-3792
2024 (engelsk)Inngår i: Privacy and Identity Management: Sharing in a Digital World / [ed] Felix Bieker, Silvia de Conca, Nils Gruschka, Meiko Jensen, Ina Schiering, Cham: Springer, 2024, s. 311-324Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Rapid proliferation of Machine Learning (ML) systems in today online services and applications have given rise to privacy preserving machine learning research field. In the tutorial we present a primer understanding of privacy preserving ML system design approaches, by drawing in the knowledge from the state-of-the art private learning methods. We present the primer understanding in the tutorial session that is part of the IFIP summer school, which included an interactive feedback discussion session. The tutorial participants range from students to experts in various different research fields and indicated their interest in the topic. The tutorial format consists of i) presentation of the tutorial topic and ii) interactive discussion session to encourage the participants to actively discuss/reinforce their understanding and operational concerns of the tutorial topics.

sted, utgiver, år, opplag, sider
Cham: Springer, 2024. s. 311-324
Serie
IFIP Advances in Information and Communication Technology, ISSN 1868-4238, E-ISSN 1868-422X ; 695
Emneord [en]
machine learning, tutorial, workshop
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:kau:diva-99541DOI: 10.1007/978-3-031-57978-3_20Scopus ID: 2-s2.0-85192373359ISBN: 978-3-031-57977-6 (tryckt)ISBN: 978-3-031-57978-3 (digital)OAI: oai:DiVA.org:kau-99541DiVA, id: diva2:1855614
Konferanse
18th IFIP WG 9.2, 9.6/11.7, 11.6 International Summer School, Privacy and Identity 2023, Oslo, Norway, August 8–11, 2023
Tilgjengelig fra: 2024-05-02 Laget: 2024-05-02 Sist oppdatert: 2025-04-23bibliografisk kontrollert

Open Access i DiVA

fulltext(663 kB)0 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 663 kBChecksum SHA-512
feb61e44d7ed69a4418470d5a11edbbb97917e3c062777c91d2ea48240a0dcf705581400d595629b9ce4eba93fb5e0144e91b4a7b45b6c2bbc28aa9fb12d6ddf
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Reuben, JenniAlaqra, Ala Sarah
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 109 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf