Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Change Point Detection in Clustered Network Performance Indicators
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).ORCID-id: 0000-0003-3461-7079
2022 (engelsk)Inngår i: Proceedings of the IEEE/IFIP Network Operations and Management Symposium 2022: Network and Service Management in the Era of Cloudification, Softwarization and Artificial Intelligence, NOMS 2022 / [ed] Varga P., Granville L.Z., Galis A., Godor I., Limam N., Chemouil P., Francois J., Pahl M.-O., Institute of Electrical and Electronics Engineers (IEEE), 2022Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The detailed performance characteristics of networking equipment is to a large extent a function of the software that controls the underlying hardware components. Most networking equipment is regularly updated with new software versions. By studying performance changes related to such changes in software, it is possible to identify particular software versions that affect the performance of the system. Consequently, having automated methods for detecting changes in network equipment performance is crucial. In this work we study the change point detection problem arising when the placement in time of software updates is known a priori, but the presence of any performance implications on any of the thousands of performance indicators that can be collected is unknown. The ability to improve the automated detection of such change points by clustering the monitored systems according to the set of collected indicators has not been fully evaluated. We here report our experience with employing clustering, together with a bootstrap-based change point detection, across a range of performance indicators. We evaluate four variations of clustering approaches, and demonstrate the resulting improvement in change point detection sensitivity. 

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2022.
Serie
IEEE IFIP Network Operations and Management Symposium
Emneord [en]
bootstrapping; Change points; clustering; NFV
HSV kategori
Identifikatorer
URN: urn:nbn:se:kau:diva-91686DOI: 10.1109/NOMS54207.2022.9789781ISI: 000851572700037Scopus ID: 2-s2.0-85133171506OAI: oai:DiVA.org:kau-91686DiVA, id: diva2:1691967
Konferanse
2022 IEEE/IFIP Network Operations and Management Symposium, NOMS 2022
Tilgjengelig fra: 2022-08-31 Laget: 2022-08-31 Sist oppdatert: 2025-02-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Garcia, Johan

Søk i DiVA

Av forfatter/redaktør
Garcia, Johan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 337 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf