Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A systematic review on emperor penguin optimizer
University Malaysia Pahang, MYS.
University Malaysia Pahang, MYS.
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). ;Czech Technical University, CZE.ORCID-id: 0000-0001-9051-7609
2021 (engelsk)Inngår i: Neural Computing & Applications, ISSN 0941-0643, E-ISSN 1433-3058, Vol. 33, nr 23, s. 15933-15953Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Emperor Penguin Optimizer (EPO) is a recently developed metaheuristic algorithm to solve general optimization problems. The main strength of EPO is twofold. Firstly, EPO has low learning curve (i.e., based on the simple analogy of huddling behavior of emperor penguins in nature (i.e., surviving strategy during Antarctic winter). Secondly, EPO offers straightforward implementation. In the EPO, the emperor penguins represent the candidate solution, huddle denotes the search space that comprises a two-dimensional L-shape polygon plane, and randomly positioned of the emperor penguins represents the feasible solution. Among all the emperor penguins, the focus is to locate an effective mover representing the global optimal solution. To-date, EPO has slowly gaining considerable momentum owing to its successful adoption in many broad range of optimization problems, that is, from medical data classification, economic load dispatch problem, engineering design problems, face recognition, multilevel thresholding for color image segmentation, high-dimensional biomedical data analysis for microarray cancer classification, automatic feature selection, event recognition and summarization, smart grid system, and traffic management system to name a few. Reflecting on recent progress, this paper thoroughly presents an in-depth study related to the current EPO's adoption in the scientific literature. In addition to highlighting new potential areas for improvements (and omission), the finding of this study can serve as guidelines for researchers and practitioners to improve the current state-of-the-arts and state-of-practices on general adoption of EPO while highlighting its new emerging areas of applications.

sted, utgiver, år, opplag, sider
Springer, 2021. Vol. 33, nr 23, s. 15933-15953
Emneord [en]
Emperor penguin optimizer, Systematic literature review, Metaheuristic algorithm
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:kau:diva-85997DOI: 10.1007/s00521-021-06442-4ISI: 000691937200003Scopus ID: 2-s2.0-85114050083OAI: oai:DiVA.org:kau-85997DiVA, id: diva2:1596307
Tilgjengelig fra: 2021-09-22 Laget: 2021-09-22 Sist oppdatert: 2022-05-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Ahmed, Bestoun S.

Søk i DiVA

Av forfatter/redaktør
Ahmed, Bestoun S.
Av organisasjonen
I samme tidsskrift
Neural Computing & Applications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 305 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf