Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit
Hasselt University, BEL; Univ North Carolina Charlotte, USA.ORCID-id: 0000-0003-4233-0895
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). Gran Sasso Sci Inst, ITA.ORCID-id: 0000-0002-5887-5040
Meiji Inst Adv Study Math Sci, JPN.
2021 (engelsk)Inngår i: Discrete and continuous dynamical systems. Series B, ISSN 1531-3492, E-ISSN 1553-524X, Vol. 26, nr 5, s. 2451-2477Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, we consider a microscopic semilinear elliptic equation posed in periodically perforated domains and associated with the Fourier-type condition on internal micro-surfaces. The first contribution of this work is the construction of a reliable linearization scheme that allows us, by a suitable choice of scaling arguments and stabilization constants, to prove the weak solvability of the microscopic model. Asymptotic behaviors of the microscopic solution with respect to the microscale parameter are thoroughly investigated in the second theme, based upon several cases of scaling. In particular, the variable scaling illuminates the trivial and non-trivial limits at the macroscale, confirmed by certain rates of convergence. Relying on classical results for homogenization of multiscale elliptic problems, we design a modified two-scale asymptotic expansion to derive the corresponding macroscopic equation, when the scaling choices are compatible. Moreover, we prove the high-order corrector estimates for the homogenization limit in the energy space H-1, using a large amount of energy-like estimates. A numerical example is provided to corroborate the asymptotic analysis.

sted, utgiver, år, opplag, sider
American Institute of Mathematical Sciences, 2021. Vol. 26, nr 5, s. 2451-2477
Emneord [en]
Pore-scale model, nonlinear elliptic equations, perforated domains, linearization, asymptotic analysis, corrector estimates
HSV kategori
Forskningsprogram
Matematik
Identifikatorer
URN: urn:nbn:se:kau:diva-83604DOI: 10.3934/dcdsb.2020190ISI: 000624972400007Scopus ID: 2-s2.0-85108500440OAI: oai:DiVA.org:kau-83604DiVA, id: diva2:1543172
Tilgjengelig fra: 2021-04-09 Laget: 2021-04-09 Sist oppdatert: 2021-07-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Thoa Thieu, T.K.

Søk i DiVA

Av forfatter/redaktør
Khoa, Vo AnhThoa Thieu, T.K.
Av organisasjonen
I samme tidsskrift
Discrete and continuous dynamical systems. Series B

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 48 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf