Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
NB-IoT Random Access: Data-driven Analysis and ML-based Enhancements
Simula Metropolitan CDE, NOR.ORCID-id: 0000-0003-0611-5637
Simula Research Laboratory, NOR.
University of Oslo, NOR; Simula Metropolitan CDE, NOR.ORCID-id: 0000-0001-5800-2779
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).ORCID-id: 0000-0001-7311-9334
Vise andre og tillknytning
2021 (engelsk)Inngår i: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 8, nr 14, s. 11384-11399Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the context of massive Machine Type Communications (mMTC), the Narrowband Internet of Things (NB-IoT) technology is envisioned to efficiently and reliably deal with massive device connectivity. Hence, it relies on a tailored Random Access (RA) procedure, for which theoretical and empirical analyses are needed for a better understanding and further improvements. This paper presents the first data-driven analysis of NB-IoT RA, exploiting a large scale measurement campaign. We show how the RA procedure and performance are affected by network deployment, radio coverage, and operators’ configurations, thus complementing simulation-based investigations, mostly focused on massive connectivity aspects. Comparison with the performance requirements reveals the need for procedure enhancements. Hence, we propose a Machine Learning (ML) approach, and show that RA outcomes are predictable with good accuracy by observing radio conditions. We embed the outcome prediction in a RA enhanced scheme, and show that optimized configurations enable a power consumption reduction of at least 50%. We also make our dataset available for further exploration, toward the discovery of new insights and research perspectives.

sted, utgiver, år, opplag, sider
IEEE, 2021. Vol. 8, nr 14, s. 11384-11399
Emneord [en]
Cellular Internet of Things, Downlink, Empirical Analysis., Estimation, Frequency conversion, Internet of Things, Long Term Evolution, massive Machine Type Communications, Narrowband, Narrowband Internet of Things, Random Access, Synchronization
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:kau:diva-83354DOI: 10.1109/JIOT.2021.3051755ISI: 000670585100030Scopus ID: 2-s2.0-85099732255OAI: oai:DiVA.org:kau-83354DiVA, id: diva2:1534383
Tilgjengelig fra: 2021-03-05 Laget: 2021-03-05 Sist oppdatert: 2024-07-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Brunstrom, Anna

Søk i DiVA

Av forfatter/redaktør
Caso, GiuseppeAlay, ÖzgüBrunstrom, AnnaNeri, Marco
Av organisasjonen
I samme tidsskrift
IEEE Internet of Things Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 189 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf