Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Functional ceria-based nanocomposites for advanced low-temperature (300–600° C) solid oxide fuel cell: A comprehensive review
University Islamabad, Pakistan; Chalmers University of Technology .ORCID-id: 0000-0003-0599-3630
Southeast University, China.
University Islamabad, Pakistan.
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för ingenjörs- och kemivetenskaper (from 2013).ORCID-id: 0000-0002-4359-2232
Vise andre og tillknytning
2020 (engelsk)Inngår i: Materials Today Energy, ISSN 2468-6069, Vol. 15, s. 1-16, artikkel-id 100373Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

There is world tendency to develop SOFC to lower temperatures and two technical routes and approaches are going in parallel. One is to use thin film technology, focussing on reducing the electrolyte thickness on conventional electrolyte, e.g. YSZ (yttria-stabilized zirconia) and SDC (samaria-doped ceria) to reduce the cell resistance i.e. to lower the operational temperatures. Another technique is to develop new materials, e.g. functional nanocomposites. This paper presents a state-of-the-art of nanocomposite electrolytes-based advanced fuel cell technology, i.e. low-temperature (300–600 °C) ceria-based fuel cells, a new scenario for fuel cell R&D with an overview of important aspects and frontier subjects.A typical nanocomposite has a core–shell type structure in nano-scale, in which ceria forms a core and a salt, e.g. carbonate or another oxide develops a shell layer covering the core. The functionality of nanocomposites is determined by the interfaces between the constituent phases, which can lead to super or fast ions transport (H+ and O2−) at interfaces. Ionic conductivities >0.1 S cm−1 already at ~300 °C have been reported. Five major characteristics of nanocomposites have been identified as important to their properties and applications in fuel cells: i) advanced materials design based on non-structure or interfacial properties/mechanisms; ii) dual or hybrid H+ and O2− conduction; iii) interfacial super-ionic conduction; iv) transition from non-functional to functional materials; v) use of interfacial and surface redox agents and reactions. In the fuel cell context, it is refer to these functional nano-composites as NANOCOFC (Nanocomposites for Advanced Fuel Cells) to distinguish them from the traditional SOFCs and to be oriented to a new fuel cell R&D strategy.

sted, utgiver, år, opplag, sider
Elsevier, 2020. Vol. 15, s. 1-16, artikkel-id 100373
Emneord [en]
Ceria–carbonate, Superionic, Low-temperature fuel cell, NANOCOFC, Interface
HSV kategori
Forskningsprogram
Kemiteknik
Identifikatorer
URN: urn:nbn:se:kau:diva-76788DOI: 10.1016/j.mtener.2019.100373ISI: 000512690800007Scopus ID: 2-s2.0-85077020673OAI: oai:DiVA.org:kau-76788DiVA, id: diva2:1393692
Tilgjengelig fra: 2020-02-17 Laget: 2020-02-17 Sist oppdatert: 2020-05-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Naqvi, Muhammad

Søk i DiVA

Av forfatter/redaktør
Raza, RizwanNaqvi, Muhammad
Av organisasjonen
I samme tidsskrift
Materials Today Energy

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 43 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf