Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Numerical model of water removal and air penetration during vacuum dewatering
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
URN: urn:nbn:se:kau:diva-75959OAI: oai:DiVA.org:kau-75959DiVA, id: diva2:1378542
Tilgjengelig fra: 2019-12-13 Laget: 2019-12-13 Sist oppdatert: 2019-12-13
Inngår i avhandling
1. Vacuum Dewatering of Cellulosic Materials: New insights into transport phenomena in the papermaking process
Åpne denne publikasjonen i ny fane eller vindu >>Vacuum Dewatering of Cellulosic Materials: New insights into transport phenomena in the papermaking process
2020 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Working towards sustainable development within the forest industry, the dewatering of pulp and paper must be fully understood along with the dewatering of other cellulose-based materials. Huge amounts of energy are used during paper manufacturing so there is a potential for making the processes more energy-efficient. This thesis attempts to gain understanding of vacuum dewatering in the forming section of the conventional papermaking process and its connection with energy consumption in order to suggest actions that may be taken not only to improve energy efficiency but also facilitate the introduction of new materials into existing processes. 

 

The main objective of this thesis is to develop a deeper understanding of the vacuum dewatering of forest-based cellulosic materials in existing paper manufacturing processes. Aspects of how rewetting, the structure of the forming fabric and additives of cellulosic materials affect vacuum dewatering are discussed in detail throughout. There is also a large section discussing the use of numerical models and software simulations of dewatering in the forming section of a papermaking machine. A brief background of the papermaking process is presented, along with useful numerical models used previously in that particular context. Three sets of experiments, including rewetting, forming fabrics and additions of cellulosic materials, compose the bulk of the thesis’ method along with two sets of simulations regarding fabrics and additives.  

 

This thesis shows how rewetting is both rapid and substantial after high vacuum suction boxes, the way in which the structure of the forming fabrics affects vacuum dewatering and how additions of micro-fibrillated cellulose and dialcohol cellulose affect vacuum dewatering. The results of the simulations and numerical models show how they can be used to explore ways of saving energy in the process as well as to facilitate the introduction of cellulosic additives into existing papermaking processes.

Abstract [en]

The main objective of this thesis is to develop a deeper understanding of the vacuum dewatering of forest-based cellulosic materials in existing paper manufacturing processes. Aspects of how rewetting, the structure of the forming fabric and additives of cellulosic materials affect vacuum dewatering are discussed in detail throughout. There is also a large section discussing the use of numerical models and software simulations of dewatering in the forming section of a papermaking machine. Three sets of experiments, including rewetting, forming fabrics and additions of cellulosic materials, compose the bulk of the thesis’ method along with two sets of simulations regarding fabrics and additives.  

 

This thesis shows how rewetting is both rapid and substantial after high vacuum suction boxes, the way in which the structure of the forming fabrics affects vacuum dewatering and how additions of micro-fibrillated cellulose and dialcohol cellulose affect vacuum dewatering. The results of the simulations and numerical models show how they can be used to explore ways of saving energy in the process as well as to facilitate the introduction of cellulosic additives into existing papermaking processes.

sted, utgiver, år, opplag, sider
Karlstads universitet, 2020. s. 105
Serie
Karlstad University Studies, ISSN 1403-8099 ; 2020:4
Emneord
Vacuum dewatering, numerical model, water removal, air penetration, papermaking, microfibrillated cellulose, dialcohol cellulose, strength additives, retention aids, drainage, water retention value
HSV kategori
Forskningsprogram
Kemiteknik
Identifikatorer
urn:nbn:se:kau:diva-75958 (URN)978-91-7867-076-5 (ISBN)978-91-7867-086-4 (ISBN)
Disputas
2020-02-07, 9C203, Nyquistsalen, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2020-01-16 Laget: 2019-12-13 Sist oppdatert: 2020-01-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 2 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf