Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks
Univ Twente, Fac Engn Technol, Enschede, Netherlands; Natl Univ Sci & Technol, Islamabad, Pakistan.
Natl Univ Sci & Technol, Islamabad, Pakistan.
Natl Univ Sci & Technol, Islamabad, Pakistan.
King Abdulaziz Univ, Dept Chem, Rabigh, Saudi Arabia; King Abdulaziz Univ, Dept Mat Engn, Rabigh, Saudi Arabia.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 233, s. 529-538Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Pyrolysis of high-ash sewage sludge (HASS) is a considered as an effective method and a promising way for energy production from solid waste of wastewater treatment facilities. The main purpose of this work is to build knowledge on pyrolysis mechanisms, kinetics, thermos-gravimetric analysis of high-ash (44.6%) sewage sludge using model-free methods & results validation with artificial neural network (ANN). TG-DTG curves at 5,10 and 20 °C/min showed the pyrolysis zone was divided into three zone. In kinetics, E values of models ranges are; Friedman (10.6–306.2 kJ/mol), FWO (45.6–231.7 kJ/mol), KAS (41.4–232.1 kJ/mol) and Popescu (44.1–241.1 kJ/mol) respectively. ΔH and ΔG values predicted by OFW, KAS and Popescu method are in good agreement and ranged from (41–236 kJ/mol) and 53–304 kJ/mol, respectively. Negative value of ΔS showed the non-spontaneity of the process. An artificial neural network (ANN) model of 2 * 5 * 1 architecture was employed to predict the thermal decomposition of high-ash sewage sludge, showed a good agreement between the experimental values and predicted values (R2 ⩾ 0.999) are much closer to 1. Overall, the study reflected the significance of ANN model that could be used as an effective fit model to the thermogravimetric experimental data. © 2018 Elsevier Ltd

sted, utgiver, år, opplag, sider
Oxon, UK: Elsevier Ltd , 2018. Vol. 233, s. 529-538
Emneord [en]
Artificial neural network, High-ash sewage sludge, Kinetics, Pyrolysis, Thermal decomposition, Thermodynamic
HSV kategori
Forskningsprogram
Kemi
Identifikatorer
URN: urn:nbn:se:kau:diva-68997DOI: 10.1016/j.fuel.2018.06.089ISI: 000441893200056Scopus ID: 2-s2.0-85048977469OAI: oai:DiVA.org:kau-68997DiVA, id: diva2:1245514
Tilgjengelig fra: 2018-09-05 Laget: 2018-09-05 Sist oppdatert: 2020-01-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Naqvi, Muhammad

Søk i DiVA

Av forfatter/redaktør
Naqvi, Muhammad
Av organisasjonen
I samme tidsskrift
Fuel

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 182 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf