Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
vmBBProfiler: A BlackBox Profiling Approach to Quantify Sensitivity of Virtual Machines to Shared Cloud Resources
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). (Computer Networking, DISCO)ORCID-id: 0000-0001-9194-010X
University of Sydney, Australia.
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). (Computer Networking, DISCO)ORCID-id: 0000-0002-9446-8143
2017 (engelsk)Inngår i: Computing, ISSN 0010-485X, E-ISSN 1436-5057, Vol. 99, nr 12, s. 1149-1177Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Virtualized Data Centers are packed with numerous web and cloud servicesnowadays. In such large infrastructures, providing reliable service platforms dependsheavily on efficient sharing of physical machines (PMs) by virtual machines (VMs).To achieve efficient consolidation, performance degradation of co-located VMs mustbe correctly understood, modeled, and predicted. This work is a major step towardunderstanding such baffling phenomena by not only identifying, but also quantifyingsensitivity of general purpose VMs to their demanded resources. vmBBProfiler, ourproposed system in this work, is able to systematically profile behavior of any generalpurpose VM and calculate its sensitivity to system provided resources such as CPU,Memory, and Disk. vmBBProfiler is evaluated using 12 well-known benchmarks,varying from pure CPU/Mem/Disk VMs to mixtures of them, on three different PMsin our VMware-vSphere based private cloud. Extensive empirical results conductedover 1200h of profiling prove the efficiency of our proposed models and solutions; italso opens doors for further research in this area. vmBBProfiler: a black-box profiling approach to quantify sensitivity of virtual machines to shared cloud resources (PDF Download Available).

sted, utgiver, år, opplag, sider
Springer, 2017. Vol. 99, nr 12, s. 1149-1177
Emneord [en]
Performance degradation, Virtualization, Cloud computing
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:kau:diva-64566DOI: 10.1007/s00607-017-0552-yISI: 000414347900001OAI: oai:DiVA.org:kau-64566DiVA, id: diva2:1155760
Prosjekter
HITSTilgjengelig fra: 2017-11-09 Laget: 2017-11-09 Sist oppdatert: 2022-06-29bibliografisk kontrollert

Open Access i DiVA

fulltext(3677 kB)257 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3677 kBChecksum SHA-512
b353f2202d7e97602cf23e75440594caeae6f3931b12b5747c58c28f78b3e01e7fb7802a34640c323793ea2681fa6cb10ab1bf7a7f9a1539d9966b138744d093
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Person

Taheri, JavidKassler, Andreas

Søk i DiVA

Av forfatter/redaktør
Taheri, JavidKassler, Andreas
Av organisasjonen
I samme tidsskrift
Computing

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 257 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 451 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • apa.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf