Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A clustering-based analysis of DPI-labeled video flow characteristics in cellular networks
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013). (DIstributed systems and communication (DISCO))ORCID-id: 0000-0003-3461-7079
2017 (engelsk)Inngår i: Proceedings of the IM 2017 - 2017 IFIP/IEEE International Symposium on Integrated Network Management, New York: IEEE, 2017, s. 1-4Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Using a specially instrumented deep packet inspection (DPI) appliance placed inside the core network of a commercial cellular operator we collect data from almost four million flows produced by a `heavy-hitter' subset of the customer base. The data contains per packet information for the first 100 packets in each flow, along with the classification done by the DPI engine. The data is used with unsupervised learning to obtain clusters of typical video flow behaviors, with the intent to quantify the number of such clusters and examine their characteristics. Among the flows identified as belonging to video applications by the DPI engine, a subset are actually video application signaling flows or other flows not carrying actual transfers of video data. Given that DPI-labeled data can be used to train supervised machine learning models to identify flows carrying video transfers in encrypted traffic, the potential presence and structure of such `noise' flows in the ground truth is important to examine. In this study K-means and DBSCAN is used to cluster the flows marked by the DPI engine as being from a video application. The clustering techniques identify a set of 4 to 6 clusters with archetypal flow behaviors, and a subset of these clusters are found to represent flows that are not actually transferring video data.

sted, utgiver, år, opplag, sider
New York: IEEE, 2017. s. 1-4
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:kau:diva-64540DOI: 10.23919/INM.2017.7987420ISBN: 978-3-901882-89-0 (digital)OAI: oai:DiVA.org:kau-64540DiVA, id: diva2:1149177
Konferanse
Integrated Network and Service Management (IM), 2017 IFIP/IEEE Symposium 8-12 May 2017, Lisbon, Portugal
Prosjekter
HITS
Forskningsfinansiär
Knowledge Foundation, 4707Tilgjengelig fra: 2017-10-13 Laget: 2017-10-13 Sist oppdatert: 2018-08-14bibliografisk kontrollert

Open Access i DiVA

fulltext(1200 kB)6 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1200 kBChecksum SHA-512
d8e9fad558fcc8c312aa07dd9130e56799b86ae56d699e277de6ba882752301150b0d855aaa8d25a10a706f46cd23fc660c911560a731f8410e2588975dd705f
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Garcia, Johan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 6 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 116 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf