Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Tool microstructure impact on the wear behavior of ferrite iron during nanoscratching: An atomic level simulation
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för ingenjörsvetenskap och fysik (from 2013). Assiut University, Egypt.ORCID-id: 0000-0003-0205-0178
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för ingenjörsvetenskap och fysik (from 2013).ORCID-id: 0000-0001-6029-2613
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för ingenjörsvetenskap och fysik (from 2013).
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för ingenjörsvetenskap och fysik (from 2013). (CMM, Materials Engineering, Materiasl Science)ORCID-id: 0000-0002-9441-2502
Vise andre og tillknytning
2017 (engelsk)Inngår i: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 370-371, s. 39-45Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the present work, molecular dynamics simulations were used to investigate the impact of the tool microstructure on the wear behavior of ferrite workpiece during nanoscratching. The tool microstructure was modified by varying the carbide (cementite) contents. The simulation results show that dislocations are the primary mechanism for plastic deformation of the workpiece material. It is found that total dislocation length varies significantly depending on the carbide content in the tool. Furthermore, other tribological phenomena were also observed to depend on the carbide contents. For example, the average value of frictional forces decreased while the normal force increases with increasing carbide contents, and hence the friction coefficient was decreased. Additionally, the shape and size of lateral and frontal pileups are lowered. The structural analysis of the pileup region reveals the loss of long range order and start of amorphisation. The temperature distribution of the pileup regions showed an increase of the pileup temperature when carbide is added into tool. The wear volume is considerably reduced when the carbide content increases. The average scratch hardness was found to decrease and the result was analyzed with the theoretical Taylor hardening model.

sted, utgiver, år, opplag, sider
Elsevier, 2017. Vol. 370-371, s. 39-45
Emneord [en]
Molecular dynamics, Carbide, Wear volume, Dislocation, Pileup
HSV kategori
Identifikatorer
URN: urn:nbn:se:kau:diva-55215DOI: 10.1016/j.wear.2016.11.008ISI: 000392776300005OAI: oai:DiVA.org:kau-55215DiVA, id: diva2:1112434
Tilgjengelig fra: 2017-06-20 Laget: 2017-06-20 Sist oppdatert: 2019-11-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

AlMotasem, Ahmed TamerBergström, JensGåård, AndersKrakhmalev, PavelHolleboom, Thijs Jan

Søk i DiVA

Av forfatter/redaktør
AlMotasem, Ahmed TamerBergström, JensGåård, AndersKrakhmalev, PavelHolleboom, Thijs Jan
Av organisasjonen
I samme tidsskrift
Wear

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 456 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf