Change search
Link to record
Permanent link

Direct link
Miihkinen, Santeri
Publications (2 of 2) Show all publications
Lindström, M., Miihkinen, S. & Norrbo, D. (2022). Exact essential norm of generalized Hilbert matrix operators on classical analytic function spaces. Advances in Mathematics, 408, Article ID 108598.
Open this publication in new window or tab >>Exact essential norm of generalized Hilbert matrix operators on classical analytic function spaces
2022 (English)In: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 408, article id 108598Article in journal (Refereed) Published
Abstract [en]

We compute the exact value of the essential norm of ageneralized Hilbert matrix operator acting on weightedBergman spaces Apv and weighted Banach spaces H∞v ofanalytic functions, where v is a general radial weight. Inparticular, we obtain the exact value of the essential normof the classical Hilbert matrix operator on standard weightedBergman spaces Apα for p > 2 + α, α ≥ 0, and on Korenblumspaces H∞α for 0 < α < 1. We also cover the Hardy spaceHp, 1 < p < ∞, case. In the weighted Bergman space case, theessential norm of the Hilbert matrix is equal to the conjecturedvalue of its operator norm and similarly in the Hardy spacecase the essential norm and the operator norm coincide. Wealso compute the exact value of the norm of the Hilbert matrixon H∞wα with weights wα(z) = (1 − |z|)α for all 0 < α < 1. Also in this case, the values of the norm and essential normcoincide.

Place, publisher, year, edition, pages
Elsevier, 2022
Keywords
Hilbert matrix operator, Essential norm, Weighted composition operator, Weighted Bergman spaces, Weighted Banach spaces of analytic functions
National Category
Computational Mathematics
Research subject
Mathematics
Identifiers
urn:nbn:se:kau:diva-91581 (URN)10.1016/j.aim.2022.108598 (DOI)000860763500021 ()2-s2.0-85135531364 (Scopus ID)
Funder
Academy of Finland, 296718
Available from: 2022-08-24 Created: 2022-08-24 Last updated: 2022-10-27Bibliographically approved
Gissy, H., Miihkinen, S. & Virtanen, J. A. (2021). On the Exponential Integrability of Conjugate Functions. Journal of Fourier Analysis and Applications, 27(6), Article ID 87.
Open this publication in new window or tab >>On the Exponential Integrability of Conjugate Functions
2021 (English)In: Journal of Fourier Analysis and Applications, ISSN 1069-5869, E-ISSN 1531-5851, Vol. 27, no 6, article id 87Article in journal (Refereed) Published
Abstract [en]

We relate the exponential integrability of the conjugate function (f) over tilde to the size of the gap in the essential range of f. Our main result complements a related theorem of Zygmund.

Place, publisher, year, edition, pages
Birkhäuser Verlag, 2021
Keywords
Exponential integrability, Conjugate function, Hilbert transform, Outer functions
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
urn:nbn:se:kau:diva-87286 (URN)10.1007/s00041-021-09885-4 (DOI)000708487200001 ()2-s2.0-85117604107 (Scopus ID)
Available from: 2021-11-22 Created: 2021-11-22 Last updated: 2022-02-28Bibliographically approved
Organisations

Search in DiVA

Show all publications