Change search
Link to record
Permanent link

Direct link
Publications (10 of 18) Show all publications
Hatamian, M., Wairimu, S., Momen, N. & Fritsch, L. (2021). A privacy and security analysis of early-deployed COVID-19 contact tracing Android apps. Empirical Software Engineering, 26(3), Article ID 36.
Open this publication in new window or tab >>A privacy and security analysis of early-deployed COVID-19 contact tracing Android apps
2021 (English)In: Empirical Software Engineering, ISSN 1382-3256, E-ISSN 1573-7616, Vol. 26, no 3, article id 36Article in journal (Refereed) Published
Abstract [en]

As this article is being drafted, the SARS-CoV-2/COVID-19 pandemic is causing harm and disruption across the world. Many countries aimed at supporting their contact tracers with the use of digital contact tracing apps in order to manage and control the spread of the virus. Their idea is the automatic registration of meetings between smartphone owners for the quicker processing of infection chains. To date, there are many contact tracing apps that have already been launched and used in 2020. There has been a lot of speculations about the privacy and security aspects of these apps and their potential violation of data protection principles. Therefore, the developers of these apps are constantly criticized because of undermining users’ privacy, neglecting essential privacy and security requirements, and developing apps under time pressure without considering privacy- and security-by-design. In this study, we analyze the privacy and security performance of 28 contact tracing apps available on Android platform from various perspectives, including their code’s privileges, promises made in their privacy policies, and static and dynamic performances. Our methodology is based on the collection of various types of data concerning these 28 apps, namely permission requests, privacy policy texts, run-time resource accesses, and existing security vulnerabilities. Based on the analysis of these data, we quantify and assess the impact of these apps on users’ privacy. We aimed at providing a quick and systematic inspection of the earliest contact tracing apps that have been deployed on multiple continents. Our findings have revealed that the developers of these apps need to take more cautionary steps to ensure code quality and to address security and privacy vulnerabilities. They should more consciously follow legal requirements with respect to apps’ permission declarations, privacy principles, and privacy policy contents.

Place, publisher, year, edition, pages
Springer Nature, 2021
Keywords
contact tracing apps, covid19, privacy, security, software quality, android, permissions, personal data, maturity, information privacy, privacy risk
National Category
Computer and Information Sciences Software Engineering
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-83509 (URN)10.1007/s10664-020-09934-4 (DOI)000631083100001 ()2-s2.0-85103351291 (Scopus ID)
Projects
Digital Well ResearchAlert
Available from: 2021-03-22 Created: 2021-03-22 Last updated: 2022-09-15Bibliographically approved
Wairimu, S. & Momen, N. (2021). Privacy Analysis of COVID-19 Contact Tracing Apps in the EU. In: Mikael Asplund and Simin Nadjm-Tehrani (Ed.), Secure IT Systems: 25th Nordic Conference, NordSec 2020, Virtual Event, November 23–24, 2020, Proceedings. Paper presented at NordSec: Nordic Conference on Secure IT Systems (pp. 213-228). Springer
Open this publication in new window or tab >>Privacy Analysis of COVID-19 Contact Tracing Apps in the EU
2021 (English)In: Secure IT Systems: 25th Nordic Conference, NordSec 2020, Virtual Event, November 23–24, 2020, Proceedings / [ed] Mikael Asplund and Simin Nadjm-Tehrani, Springer, 2021, p. 213-228Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents results from a privacy analysis of COVID-19 contact tracing apps developed within the EU. Though these apps have been termed advantageous, concerns regarding privacy have become an issue that has led to their slow adoption. In this empirical study, we perform both static and dynamic analysis to judge apps’ privacy-preserving behavior together with the analysis of the privacy and data protection goals to deduce their transparency and intervenability. From the results, we discover that while the apps aim to be privacy-preserving, not all adhere to this as we observe one tracks users’ location, while the other violates the principle of least privilege, data minimisation and transparency, which puts the users’ at risk by invading their privacy.

Place, publisher, year, edition, pages
Springer, 2021
Series
Lecture Notes in Computer Science, ISSN 0302-9743 ; 12556
Keywords
Privacy, COVID-19, Contact Tracing Apps
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-83327 (URN)10.1007/978-3-030-70852-8 (DOI)2-s2.0-85103585121 (Scopus ID)978-3-030-70852-8 (ISBN)
Conference
NordSec: Nordic Conference on Secure IT Systems
Projects
DigitalWell Research
Available from: 2021-03-04 Created: 2021-03-04 Last updated: 2022-05-03Bibliographically approved
Bock, S. & Momen, N. (2020). A Study on User Preference: Influencing App Selection Decision with Privacy Indicator. In: HCI International 2020: Late Breaking Papers: User Experience Design and Case Studies. Paper presented at HCI International, Copenhagen, Denmark 19 July 2020 through 24 July 2020 (pp. 579-599). Springer Science+Business Media B.V.
Open this publication in new window or tab >>A Study on User Preference: Influencing App Selection Decision with Privacy Indicator
2020 (English)In: HCI International 2020: Late Breaking Papers: User Experience Design and Case Studies, Springer Science+Business Media B.V., 2020, p. 579-599Conference paper, Published paper (Refereed)
Abstract [en]

This paper investigates how the use of privacy indicators in app stores can influence user behavior, and if the added information can improve consumer transparency. After a pre-study on the design and symbology, a visual privacy indicator was implemented and evaluated in an app market prototype. A total of 82 participants were asked to select a number of task-specific apps. By varying the degrees of participatory background information, we show that impact of a privacy indicator on app selection behavior has statistical significance and such privacy preserving behavior can be invoked by mere presence of the indicator.

Place, publisher, year, edition, pages
Springer Science+Business Media B.V., 2020
Series
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 2612
Keywords
Decision making, Indicator design, Mobile interface, Privacy, Transparency, User study, Consumer behavior, Human computer interaction, User experience, App stores, Background information, Mere presences, Privacy preserving, Selection decisions, Statistical significance, User behaviors, Privacy by design
National Category
Computer Sciences
Identifiers
urn:nbn:se:kau:diva-83068 (URN)10.1007/978-3-030-60114-0_39 (DOI)2-s2.0-85092919997 (Scopus ID)978-3-030-60113-3 (ISBN)
Conference
HCI International, Copenhagen, Denmark 19 July 2020 through 24 July 2020
Available from: 2021-02-21 Created: 2021-02-21 Last updated: 2021-03-11Bibliographically approved
Momen, N. & Fritsch, L. (2020). App-generated digital identities extracted through Androidpermission-based data access - a survey of app privacy. In: Reinhardt, D.; Langweg, H.; Witt, B. C; Fischer, M (Ed.), Sicherheit 2020: . Paper presented at INFORMATIK 2020 - Back to the Future (pp. 15-28). Gesellschaft für Informatik
Open this publication in new window or tab >>App-generated digital identities extracted through Androidpermission-based data access - a survey of app privacy
2020 (English)In: Sicherheit 2020 / [ed] Reinhardt, D.; Langweg, H.; Witt, B. C; Fischer, M, Gesellschaft für Informatik, 2020, p. 15-28Conference paper, Published paper (Refereed)
Abstract [en]

Smartphone apps that run on Android devices can access many types of personal information. Such information can be used to identify, profile and track the device users when mapped into digital identity attributes. This article presents a model of identifiability through access to personal data protected by the Android access control mechanism called permissions. We present an abstraction of partial identity attributes related to such personal data, and then show how apps accumulate such attributes in a longitudinal study that was carried out over several months. We found that apps' successive access to permissions accumulates such identity attributes, where different apps show different interest in such attributes.

Place, publisher, year, edition, pages
Gesellschaft für Informatik, 2020
Keywords
Privacy; Android; Apps; IdentiĄcation; Digital Identity; Survey and Permissions
National Category
Computer Sciences Information Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-77345 (URN)10.18420/sicherheit2020_01 (DOI)978-3-88579-695-4 (ISBN)
Conference
INFORMATIK 2020 - Back to the Future
Projects
Ars Forencia
Note

Konferensen inställd, men bidrag publicerat

Available from: 2020-03-24 Created: 2020-03-24 Last updated: 2021-03-11Bibliographically approved
Bock, S. & Momen, N. (2020). Einfluss einer Datenschutzskala auf das Auswahlverhalten in einem App-Markt.. In: Digitaler Wandel, digitale Arbeit, digitaler Mensch?: . Paper presented at Frühjahrskongress 2020 - Digitaler Wandel, digitale Arbeit, digitaler Mensch? GfA, Dortmund (Hrsg.): Frühjahrskongress 2020, Berlin. Dortmund: Gesellschaft für Arbeitswissenschaft (GfA), Article ID B.19.1.
Open this publication in new window or tab >>Einfluss einer Datenschutzskala auf das Auswahlverhalten in einem App-Markt.
2020 (German)In: Digitaler Wandel, digitale Arbeit, digitaler Mensch?, Dortmund: Gesellschaft für Arbeitswissenschaft (GfA), 2020, article id B.19.1Conference paper, Published paper (Refereed)
Abstract [de]

Beim Herunterladen von Smartphone-Applikationen wird bei den meist genutzten Plattformen kaum über den Datenaustausch und den Datenschutz informiert. Diese Studie zeigt den Einfluss einer im App-Markt implementierten Datenschutzskala auf das Nutzerverhalten. Die hinzugefügten App-spezifischen Informationen zum Datenaustausch und Datenzugriff führten zu einer sachkundigeren Applikationsauswahl bezüglich des Datenschutzes. Insgesamt 82 Teilnehmende wurden gebeten, vorgegebene Aufgaben an einem Smartphone zu erfüllen. Das Auswahlverhalten im einem prototypisierten App-Markt wurde aufgezeichnet und mit Hilfe eines Interviews von den Teilnehmenden reflektiert. Vier Stichproben wurden jeweils verschiedene Bedingungen dargeboten, um den Einfluss auf das Auswahlverhalten näher zu erfassen.

Place, publisher, year, edition, pages
Dortmund: Gesellschaft für Arbeitswissenschaft (GfA), 2020
Keywords
Datenschutz, Privatsphäre, Auswahlverhalten, Transparenz, mobile Endgeräte, Rechtefreigaben
National Category
Human Computer Interaction
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-77923 (URN)978-3-936804-27-0 (ISBN)
Conference
Frühjahrskongress 2020 - Digitaler Wandel, digitale Arbeit, digitaler Mensch? GfA, Dortmund (Hrsg.): Frühjahrskongress 2020, Berlin
Available from: 2020-06-02 Created: 2020-06-02 Last updated: 2020-11-19Bibliographically approved
Momen, N. (2020). Measuring Apps' Privacy-Friendliness: Introducing transparency to apps' data access behavior. (Doctoral dissertation). Karlstads universitet
Open this publication in new window or tab >>Measuring Apps' Privacy-Friendliness: Introducing transparency to apps' data access behavior
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Mobile apps brought unprecedented convenience to everyday life, and nowadays, hardly any interactive service exists without having an interface through an app. The rich functionalities of apps rely on the pervasive capabilities of the mobile device, such as its cameras and other types of sensors. Consequently, apps generate a diverse and large amount of data, which can often be deemed as privacy-sensitive data. As the mobile device is also equipped with several means to transmit the collected data, such as WiFi and 4G, it brings further concerns about individuals' privacy.

Even though mobile operating systems use access control mechanisms to guard system resources and sensors, apps exercise their granted privileges in an opaque manner. Depending on the type of privilege, apps require explicit approval from the user in order to acquire access to them through permissions. Nonetheless, granting permission does not put constraints on the access frequency. Granted privileges allow the app to access users' personal data for a long period of time, typically until the user explicitly revokes the access. Furthermore, available control tools lack monitoring features, and therefore, the user faces hindrances to comprehend the magnitude of personal data access. Such circumstances can erode intervenability from the interface of the phone, lead to incomprehensible handling of personal data, and thus, create privacy risks for the user.

This thesis covers a long-term investigation of apps' data access behavior and makes an effort to shed light on various privacy implications. It also shows that app behavior analysis yields information that has the potential to increase transparency, to enhance privacy protection, to raise awareness regarding consequences of data disclosure, and to assist the user in informed decision-making while selecting apps or services. We introduce models, methods, and demonstrate the data disclosure risks with experimental results. Finally, we show how to communicate privacy risks through the user interface by taking the results of app behavior analyses into account.

Abstract [en]

Mobile apps brought unprecedented convenience to everyday life, and nowadays, hardly any interactive service exists without having an interface through an app. The rich functionalities of apps rely on the pervasive capabilities of the mobile device. Consequently, apps generate a diverse and large amount of data, which can often be deemed as privacy-sensitive data.

Even though mobile operating systems use access control mechanisms to guard system resources and sensors, apps exercise their granted privileges in an opaque manner. Furthermore, available control tools lack monitoring features, and therefore, the user faces hindrances to comprehend the magnitude of personal data access.

This thesis covers a long-term investigation of apps' data access behavior and makes an effort to shed light on various privacy implications. It also shows that app behavior analysis yields information that has the potential to increase transparency, to enhance privacy protection, to raise awareness regarding consequences of data disclosure, and to assist the user in informed decision-making while selecting apps or services.

Place, publisher, year, edition, pages
Karlstads universitet, 2020. p. 218
Series
Karlstad University Studies, ISSN 1403-8099 ; 2020:24
Keywords
Mobile Apps, User data, Transparency, Privacy, Data protection
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-79308 (URN)978-91-7867-132-8 (ISBN)978-91-7867-137-3 (ISBN)
Public defence
2020-10-09, 9C203, Universitetsgatan 2, Karlstad, 09:15 (English)
Opponent
Supervisors
Available from: 2020-09-09 Created: 2020-08-11 Last updated: 2020-09-09Bibliographically approved
Momen, N. & Bock, S. (2020). Neither Do I Want to Accept, nor Decline; Is There an Alternative?. In: Communications in Computer and Information Science: . Paper presented at 22nd International Conference on Human-Computer Interaction, HCII 2020; Copenhagen; Denmark; 19 July 2020 through 24 July 2020 (pp. 573-580). Springer
Open this publication in new window or tab >>Neither Do I Want to Accept, nor Decline; Is There an Alternative?
2020 (English)In: Communications in Computer and Information Science, Springer , 2020, p. 573-580Conference paper, Published paper (Refereed)
Abstract [en]

As we spend a considerable amount of time on various user interfaces, it often requires to provide consent for grating privileges. This article addresses the opportunity for providing conditional consent which could potentially aid the user in understanding consequences, making informed decisions, and gaining trust in data sharing. We introduce an indecisive state of mind before consenting to policies, that will enable consumers to evaluate data services before fully committing to their data sharing policies. We discuss usability, regulatory, social, individual and economic aspects for inclusion of partial commitment within the context of an user interface for consent management. Then, we look into the possibilities to integrate it within the permission granting mechanism of Android by introducing an additional button in the interface—Maybe. This article also presents a design for such implementation, demonstrates feasibility by showcasing a prototype built on Android platform, and elaborates on a planned user study to determine feasibility, usability, and user expectation.

Place, publisher, year, edition, pages
Springer, 2020
Keywords
Conditional consent, Data protection, Partial commitment, Privacy, Android (operating system), Data Sharing, Human computer interaction, Android platforms, Consent managements, Data services, Economic aspects, Informed decision, User expectations, User study, User interfaces
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-82950 (URN)10.1007/978-3-030-50732-9_74 (DOI)2-s2.0-85088749911 (Scopus ID)9783030507312 (ISBN)
Conference
22nd International Conference on Human-Computer Interaction, HCII 2020; Copenhagen; Denmark; 19 July 2020 through 24 July 2020
Available from: 2021-02-19 Created: 2021-02-19 Last updated: 2021-04-20Bibliographically approved
Bock, S. & Momen, N. (2020). Nudging the User with Privacy Indicator: A Study on the App Selection Behavior of the User. In: Proceedings of the 11th Nordic ACM Conference on Human-Computer Interaction (NordiCHI '20): . Paper presented at The 11th Nordic ACM Conference on Human-Computer Interaction (NordiCHI '20) (pp. 1-12). Tallinn, Estonia: ACM Digital Library, Article ID 60.
Open this publication in new window or tab >>Nudging the User with Privacy Indicator: A Study on the App Selection Behavior of the User
2020 (English)In: Proceedings of the 11th Nordic ACM Conference on Human-Computer Interaction (NordiCHI '20), Tallinn, Estonia: ACM Digital Library, 2020, p. 1-12, article id 60Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents an empirical study on user behavior, decision making, and perception about privacy concern while selecting apps. An app store demo was presented to the user with a minor modification---a privacy indicator for each app. After carrying out several tasks using this modified mobile interface, participants were interviewed to document reasons behind their decisions, thought process, and perception regarding individual privacy. A total of 82 adults volunteered under the pretext of a usability study. A significant influence of the privacy indicator on their app selection behavior was observed, although this influence decreased in case of familiar apps. Furthermore, responses from questionnaires, data from eye-tracking device and documented interviews, with video confrontation showed coherence with respect to the corresponding app selection behavior.

Place, publisher, year, edition, pages
Tallinn, Estonia: ACM Digital Library, 2020
Keywords
Privacy indicator, Transparency, Decision making, User study.
National Category
Human Computer Interaction
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-79307 (URN)10.1145/3419249.3420111 (DOI)2-s2.0-85095832124 (Scopus ID)
Conference
The 11th Nordic ACM Conference on Human-Computer Interaction (NordiCHI '20)
Available from: 2020-08-11 Created: 2020-08-11 Last updated: 2021-03-18Bibliographically approved
Momen, N. & Fritsch, L. (2020). Smartphone-Apps unter Beobachtung. digma - Zeitschrift für Datenrecht und Informationssicherheit, 20(3), 152-155
Open this publication in new window or tab >>Smartphone-Apps unter Beobachtung
2020 (German)In: digma - Zeitschrift für Datenrecht und Informationssicherheit, ISSN 1424-9944, Vol. 20, no 3, p. 152-155Article in journal (Other academic) Published
Abstract [de]

Smartphones mit Android-Betriebssystem haben ein Zugriffskontrollsystem, welches auf Zugriffsrechten – zugeteilt per App – basiert. Damit werden Zugriffe von Android-Anwendungen Dritter auf kritische Ressourcen einschränkt. Einige dieser Rechte – von Google als sogenannte «dangerous permissions» definiert – bedürfen vor ihrer Aktivierung der Zustimmung des Nutzers. Dies geschieht durch ein Anklicken einer Zustimmung nach Start der App. Danach kann die App nach Belieben auf die jeweilige Datenquelle, beispielsweise Standortdaten (GPS), Kamera, Telefonstatus oder Adressbuch, zugreifen. Verlangt eine App Zugriff beispielsweise auf das Adressbuch, so muss vom Nutzer der Adressbuch-Zugriff beim ersten Versuch genehmigt werden. Diese Genehmigung wird dann ohne zeitliche Einschränkung in der App für zukünftige Zugriffe hinterlegt.

Eine Verweigerung der Rechte in den Einstellungen führt oft zu Fehlfunktionen der Apps.

Laufzeitberechtigungen werden auf Gruppenbasis erteilt. Um zum Beispiel Bluetooth verwenden zu können, wie es die Covid App benötigt, muss der Nutzer die Zustimmung zur Gruppe «Standort» geben. Wenn eine Anwendung erneut Laufzeitberechtigungen anfordert, die sich auf dieselbe Berechtigungsgruppe beziehen, werden, sobald eine davon erteilt ist, auch alle anderen erteilt. 

In unserer Forschung stellten wir uns die Aufgabe, die Zugriffsfrequenzen auf datenschutzrelevante Datenquellen zu messen. Ziel war die Quantifizierung des Risikos für den Nutzer und die Schaffung von Transparenz über Datensammlungen sowohl in wissenschaftlicher Perspektive also auch zur Information von Endnutzern. Im Folgenden beschreiben wir Ergebnisse und Vorgehensweise unserer Studien.

 

Abstract [en]

This article presents an overview over a study of how Android smartphone apps user the permission-based access control system in order to extract personal data from smart phones. The study profiled app behavior in a longitudinal study. The data was analyzed and projected into different models with the aim to assess potential privacy risk from apps based on their run-time behavior. This article summarizes our findings and insights. 

Place, publisher, year, edition, pages
Zürich (CH): Schulthess Juristische Medien AG, 2020
Keywords
apps, data protection, empirics, smart phones, data collection, data transfer, privacy, transparency, android, apps, datenschutz, empiri, smarttelefone, datensammeln, datentransfer, privatsphäre, transparenz. mobiltelefonie, android
National Category
Computer and Information Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-81886 (URN)
Available from: 2020-12-14 Created: 2020-12-14 Last updated: 2022-11-25Bibliographically approved
Hatamian, M., Momen, N., Fritsch, L. & Rannenberg, K. (2019). A Multilateral Privacy Impact Analysis Method for Android Apps. In: M. Naldi, G. F. Italiano, K. Rannenberg, M. Medina & A. Bourka (Ed.), Privacy Technologies and Policy: . Paper presented at Annual Privacy Forum 2019, Rome, Italy, June 13-14 (pp. 87-106). Cham: Springer, 11498
Open this publication in new window or tab >>A Multilateral Privacy Impact Analysis Method for Android Apps
2019 (English)In: Privacy Technologies and Policy / [ed] M. Naldi, G. F. Italiano, K. Rannenberg, M. Medina & A. Bourka, Cham: Springer, 2019, Vol. 11498, p. 87-106Conference paper, Published paper (Refereed)
Abstract [en]

Smartphone apps have the power to monitor most of people’s private lives. Apps can permeate private spaces, access and map social relationships, monitor whereabouts and chart people’s activities in digital and/or real world. We are therefore interested in how much information a particular app can and intends to retrieve in a smartphone. Privacy-friendliness of smartphone apps is typically measured based on single-source analyses, which in turn, does not provide a comprehensive measurement regarding the actual privacy risks of apps. This paper presents a multi-source method for privacy analysis and data extraction transparency of Android apps. We describe how we generate several data sets derived from privacy policies, app manifestos, user reviews and actual app profiling at run time. To evaluate our method, we present results from a case study carried out on ten popular fitness and exercise apps. Our results revealed interesting differences concerning the potential privacy impact of apps, with some of the apps in the test set violating critical privacy principles. The result of the case study shows large differences that can help make relevant app choices.

Place, publisher, year, edition, pages
Cham: Springer, 2019
Series
Lecture Notes in Computer Science, LNCS, ISSN 0302-9743, E-ISSN 1611-3349 ; 11498
Keywords
Smartphone apps, Case study, Security, Privacy, Android, Privacy policy, Reviews, Privacy impact, Privacy score and ranking, Privacy risk, Transparency
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-72432 (URN)10.1007/978-3-030-21752-5_7 (DOI)000561013800007 ()2-s2.0-85067825202 (Scopus ID)978-3-030-21751-8 (ISBN)978-3-030-21752-5 (ISBN)
Conference
Annual Privacy Forum 2019, Rome, Italy, June 13-14
Projects
Excellenta miljön, 8730Alert, 5617Privacy & Us, 4961
Available from: 2019-06-12 Created: 2019-06-12 Last updated: 2020-09-24Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-5235-5335

Search in DiVA

Show all publications