Change search
Link to record
Permanent link

Direct link
BETA
Alizadeh Noghani, KyoomarsORCID iD iconorcid.org/0000-0001-9866-8209
Alternative names
Publications (10 of 15) Show all publications
Alizadeh Noghani, K. (2020). Service Migration in Virtualized Data Centers. (Doctoral dissertation). Karlstad: Karlstads universitet
Open this publication in new window or tab >>Service Migration in Virtualized Data Centers
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Modern virtualized Data Centers (DCs) require efficient management techniques to guarantee high quality services while reducing their economical cost. The ability to live migrate virtual instances, e.g., Virtual Machines (VMs), both inside and among DCs is a key operation for the majority of DC management tasks that brings significant flexibility into the DC infrastructure. However, live migration introduces new challenges as it ought to be fast and seamless while at the same time imposing a minimum overhead on the network. In this thesis, we study the networking problems of live service migration in modern DCs when services are deployed in virtualized environments, e.g., VMs and containers. In particular, this thesis has the following main objectives: (1) improving the live VM migration in Software-Defined Network (SDN) enabled DCs by addressing networking challenges of live VM migration, and (2) investigating the trade-off between the reconfiguration cost and optimality of the Service Function Chains (SFCs) placement after the reconfiguration has been applied when SFCs are composed of stateful Virtual Network Functions (VNFs).

To achieve the first objective, in this thesis, we use distinctive characteristics of SDN architectures such as their centralized control over the network to accelerate the network convergence time and address suboptimal routing problem. Consequently, we enhance the quality of intra- and inter-DC live migrations. Furthermore, we develop an SDN-based framework to improve the inter-DC live VM migration by automating the deployment, improving the management, enhancing the performance, and increasing the scalability of interconnections among DCs.

To accomplish the second objective, we investigate the overhead of dynamic reconfiguration of stateful VNFs. Dynamic reconfiguration of VNFs is frequently required in various circumstances, and live migration of VNFs is an integral part of this operation. By mathematically formulating the reconfiguration costs of stateful VNFs and developing a multi-objective heuristic solution, we explore the trade-off between the reconfiguration cost required to improve a given placement and the degree of optimality achieved after the reconfiguration is performed. Results show that the cost of performing the reconfiguration operations required to realize an optimal VNF placement might hamper the gain that could be achieved.

Abstract [en]

Modern virtualized Data Centers (DCs) require efficient management techniques to guarantee high quality services while reducing their economical cost. The ability to live migrate virtual instances, e.g., Virtual Machines (VMs), both inside and among DCs, is a key operation for the majority of DC management tasks that brings significant flexibility into the DC infrastructure. However, live migration introduces new challenges as it ought to be fast and seamless while at the same time imposing a minimum overhead on the network.

This thesis investigates the networking challenges of short and long-haul live VM migration in Software Defined Networking (SDN) enabled DCs. We propose solutions to make the intra- and inter-DC live VM migration more seamless. Our proposed SDN-based framework for inter-DC migration improves the management, enhances the performance, and increases the scalability of interconnections among DCs.

Moreover, by considering the overhead of VM migration over the network, servers, and quality of service the VM provides, we explore the trade-off between the costs required to change the placement of VMs and the optimality degree of the placement in the DC. Results show that the cost of improving the placement might hamper the gain that could be achieved.

Place, publisher, year, edition, pages
Karlstad: Karlstads universitet, 2020. p. 49
Series
Karlstad University Studies, ISSN 1403-8099 ; 2020:1
Keywords
Data Center, Ethernet VPN, EVPN, Live Service Migration, Reconfiguration, SDN, Virtual Network Function, VNF
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-75921 (URN)978-91-7867-073-4 (ISBN)978-91-7867-083-3 (ISBN)
Public defence
2020-02-07, 21A342 (Eva Eriksson lecture hall), Universitetsgatan 2, 651 88, Karlstad, 10:15 (English)
Opponent
Supervisors
Funder
Knowledge Foundation
Available from: 2020-01-16 Created: 2019-12-12 Last updated: 2020-01-16Bibliographically approved
Alizadeh Noghani, K., Kassler, A. & Taheri, J. (2019). On the Cost-Optimality Trade-off for Service Function Chain Reconfiguration. In: : . Paper presented at IEEE CloudNet 2019 - 8th IEEE International Conference on Cloud Networking, Coimbra, Portugal, 4-6 Nov. 2019. IEEE
Open this publication in new window or tab >>On the Cost-Optimality Trade-off for Service Function Chain Reconfiguration
2019 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Optimal placement of Virtual Network Functions (VNFs) in virtualized data centers enhances the overall performance of Service Function Chains (SFCs) and decreases the operational costs for mobile network operators. Maintaining an optimal placement of VNFs under changing load requires a dynamic reconfiguration that includes adding or removing VNF instances, changing the resource allocation of VNFs, and re-routing corresponding service flows. However, such reconfiguration may lead to notable service disruptions and impose additional overhead on the VNF infrastructure, especially when reconfiguration entails state or VNF migration. On the other hand, not changing the existing placement may lead to high operational costs. In this paper, we investigate the trade-off between the reconfiguration of SFCs and the optimality of the resulting placement and service flow (re)routing. We model different reconfiguration costs related to the migration of stateful VNFs and solve a joint optimization problem that aims to minimize both the total cost of the VNF placement and the reconfiguration cost necessary for repairing a suboptimal placement. Numerical results show that a small number of reconfiguration operations can significantly reduce the operational cost of the VNF infrastructure; however, too much reconfiguration may not pay off should heavy costs be involved.

Place, publisher, year, edition, pages
IEEE, 2019
Keywords
Joint optimization problem, reconfiguration, virtual network function, VNF migration
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-75574 (URN)
Conference
IEEE CloudNet 2019 - 8th IEEE International Conference on Cloud Networking, Coimbra, Portugal, 4-6 Nov. 2019
Projects
HITS
Funder
Knowledge Foundation
Available from: 2019-11-11 Created: 2019-11-11 Last updated: 2019-12-12Bibliographically approved
Alizadeh Noghani, K. & Kassler, A. (2019). Reconfiguration of Service Function Chains: Trade-off between Optimality and Effort. In: Proceedings of the 30th European conference on operational research, Euro 2019, 23-26 June, Dublin, Ireland.: . Paper presented at 30th European conference on operational research, Euro 2019, 23-26 June, Dublin, Ireland..
Open this publication in new window or tab >>Reconfiguration of Service Function Chains: Trade-off between Optimality and Effort
2019 (English)In: Proceedings of the 30th European conference on operational research, Euro 2019, 23-26 June, Dublin, Ireland., 2019Conference paper, Oral presentation with published abstract (Refereed)
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-77383 (URN)
Conference
30th European conference on operational research, Euro 2019, 23-26 June, Dublin, Ireland.
Projects
HITS
Funder
Knowledge Foundation, 4707
Available from: 2020-03-31 Created: 2020-03-31 Last updated: 2020-04-14Bibliographically approved
Alizadeh Noghani, K., Ghazzai, H. & Kassler, A. (2018). A Generic Framework for Task Offloading in mmWave MEC Backhaul Networks. In: 2018 IEEE Global Communications Conference (GLOBECOM): . Paper presented at 2018 IEEE Global Communications Conference (GLOBECOM) Abu Dhabi, United Arab Emirates, 9-13 dec (pp. 1-7). IEEE
Open this publication in new window or tab >>A Generic Framework for Task Offloading in mmWave MEC Backhaul Networks
2018 (English)In: 2018 IEEE Global Communications Conference (GLOBECOM), IEEE, 2018, p. 1-7Conference paper, Published paper (Refereed)
Abstract [en]

With the emergence of millimeter-Wave (mmWave) communication technology, the capacity of mobile backhaul networks can be significantly increased. On the other hand, Mobile Edge Computing (MEC) provides an appropriate infrastructure to offload latency-sensitive tasks. However, the amount of resources in MEC servers is typically limited. Therefore, it is important to intelligently manage the MEC task offloading by optimizing the backhaul bandwidth and edge server resource allocation in order to decrease the overall latency of the offloaded tasks. This paper investigates the task allocation problem in MEC environment, where the mmWave technology is used in the backhaul network. We formulate a Mixed Integer NonLinear Programming (MINLP) problem with the goal to minimize the total task serving time. Its objective is to determine an optimized network topology, identify which server is used to process a given offloaded task, find the path of each user task, and determine the allocated bandwidth to each task on mmWave backhaul links. Because the problem is difficult to solve, we develop a two-step approach. First, a Mixed Integer Linear Program (MILP) determining the network topology and the routing paths is optimally solved. Then, the fractions of bandwidth allocated to each user task are optimized by solving a quasi-convex problem. Numerical results illustrate the obtained topology and routing paths for selected scenarios and show that optimizing the bandwidth allocation significantly improves the total serving time, particularly for bandwidth-intensive tasks.

Place, publisher, year, edition, pages
IEEE, 2018
Series
IEEE Global Communications Conference (GLOBECOM), ISSN 2576-6813, E-ISSN 2576-6813
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-71436 (URN)10.1109/GLOCOM.2018.8647559 (DOI)000465774302096 ()978-1-5386-4727-1 (ISBN)978-1-5386-6976-1 (ISBN)
Conference
2018 IEEE Global Communications Conference (GLOBECOM) Abu Dhabi, United Arab Emirates, 9-13 dec
Projects
Socra, 4840
Funder
Knowledge Foundation
Available from: 2019-03-05 Created: 2019-03-05 Last updated: 2019-11-10Bibliographically approved
Alizadeh Noghani, K., Kassler, A. & Sankar Gopannan, P. (2018). EVPN/SDN Assisted Live VM Migration between Geo-Distributed Data Centers. In: 4th IEEE Conference on Network Softwarization (NetSoft): . Paper presented at 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, Canada, June 25-29, 2018. (pp. 105-113). IEEE
Open this publication in new window or tab >>EVPN/SDN Assisted Live VM Migration between Geo-Distributed Data Centers
2018 (English)In: 4th IEEE Conference on Network Softwarization (NetSoft), IEEE, 2018, p. 105-113Conference paper, Published paper (Refereed)
Abstract [en]

Live Virtual Machine (VM) migration has significantly improved the flexibility of modern Data Centers (DC). However, seamless live migration of a VM between geo-distributed DCs faces several challenges due to difficulties in preserving the network configuration after the migration paired with a large network convergence time. Although SDN-based approaches can speed up network convergence time, these techniques have two limitations. First, they typically react to the new topology by installing new flow rules once the migration is finished. Second, because the WAN is typically not under SDN control, they result in sub-optimal routing thus severely degrading the network performance once the VM is attached at the new location.

In this paper, we identify networking challenges for VM migration across geo-distributed DCs. Based on those observations, we design a novel long-haul VM migration scheme that overcomes those limitations. First, instead of reactively restoring connectivity after the migration, our SDN-based approach proactively restores flows across the WAN towards the new location with the help of EVPN and VXLAN overlay technologies. Second, the SDN controller accelerates the network convergence by announcing the migration to other controllers using MP-BGP control plane messages. Finally, the SDN controller resolves the sub-optimal routing problem that arises as a result of migration implementing a distributed anycast gateway. We implement our approach as extensions to the OpenDaylight controller. Our evaluation shows that our approach outperforms existing approaches in reducing the downtime by 400 ms and increasing the application performance up to 12 times.

Place, publisher, year, edition, pages
IEEE, 2018
Keywords
Data Center, Ethernet VPN, Software Defined Networks, Distributed Gateway, VM Migration
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-70164 (URN)10.1109/NETSOFT.2018.8459946 (DOI)000455125000012 ()978-1-5386-4633-5 (ISBN)
Conference
4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, Canada, June 25-29, 2018.
Projects
HITS
Funder
Knowledge Foundation
Available from: 2018-11-19 Created: 2018-11-19 Last updated: 2019-12-12Bibliographically approved
Rezgui, A., Alizadeh Noghani, K. & Taheri, J. (2018). SDN helps Big Data to become fault tolerant (1ed.). In: Javid Taheri (Ed.), Big Data and Software Defined Networks: (pp. 319-336). London: IET Digital Library
Open this publication in new window or tab >>SDN helps Big Data to become fault tolerant
2018 (English)In: Big Data and Software Defined Networks / [ed] Javid Taheri, London: IET Digital Library, 2018, 1, p. 319-336Chapter in book (Refereed)
Abstract [en]

SDN networks would have many advantages to be used as fault-tolerant Big Data infrastructures such as programmability and global network view which help monitor and control the network behavior adaptively and efficiently. This chapter studied a number of requirements to provide fault tolerance in networks that Big Data applications perform upon. First, we studied the key requirements to be fault tolerant. The network topology design is crucial to provide resiliency against node or link failure. Second, we mentioned the principle concepts of fault tolerance and elaborated on reactive and proactive methods as two common approaches to deal with the failures in networks. Third, the fault-tolerant mechanisms in SDN architecture and their advantages were elucidated. Consequently, we investigated a number of studies that leverage SDN to provide fault tolerance. Finally, this chapter was concluded by introducing open issues and challenges in SDN architecture to provide a perfect fault-tolerant network.

Place, publisher, year, edition, pages
London: IET Digital Library, 2018 Edition: 1
Keywords
telecommunication network topology; Big Data; computer network reliability; software defined networking; failure analysis; software fault tolerance
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-67214 (URN)10.1049/PBPC015E_ch15 (DOI)978-1-78561-304-3 (ISBN)978-1-78561-305-0 (ISBN)
Available from: 2018-04-27 Created: 2018-04-27 Last updated: 2019-11-07Bibliographically approved
Alizadeh Noghani, K., Hernandez Benet, C. & Taheri, J. (2018). SDN helps volume in Big Data (1ed.). In: Javid Taheri (Ed.), Big Data and Software Defined Networks: (pp. 185-206). London: IET Digital Library
Open this publication in new window or tab >>SDN helps volume in Big Data
2018 (English)In: Big Data and Software Defined Networks / [ed] Javid Taheri, London: IET Digital Library, 2018, 1, p. 185-206Chapter in book (Refereed)
Abstract [en]

Both Big Data and SDN are described in detail in previous chapters. This chapter investigates how SDN architecture can leverage its unique features to mitigate the challenges of Big Data volume. Accordingly, first, we provide an overview of Big Data volume, its effects on the underlying network, and mention some potential SDN solutions to address the corresponding challenges. Second, we elaborate more on the network-monitoring, traffic-engineering, and fault-tolerant mechanisms which we believe they may help to address the challenges of Big Data volume. Finally, this chapter is concluded with some open issues.

Place, publisher, year, edition, pages
London: IET Digital Library, 2018 Edition: 1
Keywords
Big Data; software fault tolerance; software defined networking; telecommunication traffic
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-67212 (URN)10.1049/PBPC015E_ch9 (DOI)978-1-78561-304-3 (ISBN)978-1-78561-305-0 (ISBN)
Available from: 2018-04-27 Created: 2018-04-27 Last updated: 2019-11-07Bibliographically approved
Hernandez Benet, C., Alizadeh Noghani, K. & Taheri, J. (2018). SDN implementations and protocols (1ed.). In: Javid Taheri (Ed.), Big Data and Software Defined Networks: (pp. 27-48). IET Digital Library
Open this publication in new window or tab >>SDN implementations and protocols
2018 (English)In: Big Data and Software Defined Networks / [ed] Javid Taheri, IET Digital Library, 2018, 1, p. 27-48Chapter in book (Refereed)
Abstract [en]

This chapter begins by explaining the main SDN concepts with the focus on a SDN controller. It presents the most important aspects to consider when we desire to go from traditional network to a SDN networks. We present an in-depth analysis of the most commonly used and modern SDN controllers and analyse the main features, capabilities and requirements of one of the presented controllers. OpenFlow is the standard leading in the market allowing the management of the forwarding plane devices such as routers or switches. While there are other standards with the same aim, OpenFlow has secured a position in the market and has been expanded rapidly. Therefore, an analysis is presented on a different OpenFlow compatible device for the implementation of an SDN network. This study encompasses both software and hardware solutions along with the scope of implementation or use of these devices. This chapter ends up presenting a description of OpenFlow protocol alternatives, a more detailed description of OpenFlow and its components and other wellknown southbound protocols involved for the management and configuration of the devices.

Place, publisher, year, edition, pages
IET Digital Library, 2018 Edition: 1
Keywords
software defined networking; protocols
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-67209 (URN)10.1049/PBPC015E_ch2 (DOI)978-1-78561-304-3 (ISBN)978-1-78561-305-0 (ISBN)
Available from: 2018-04-27 Created: 2018-04-27 Last updated: 2019-11-07Bibliographically approved
Alizadeh Noghani, K. (2018). Towards Seamless Live Migration in SDN-Based Data Centers. (Licentiate dissertation). Karlstad: Karlstads universitet
Open this publication in new window or tab >>Towards Seamless Live Migration in SDN-Based Data Centers
2018 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Live migration of Virtual Machines (VMs) has significantly improved the flexibility of modern Data Centers (DCs). Ideally, live migration ought to be seamless which in turn raises challenges on how to minimize service disruption and avoid performance degradation. To address these challenges, a comprehensive support from the underlying network is required. However, legacy DC networks fall short to help as they take a reactive approach to live migration procedure. Moreover, the complexity and inflexibility of legacy DC networks make it difficult to deploy, manage, and improve network technologies that DC providers may need to use for migration.

In this thesis, we explore the application of Software Defined Networking (SDN) paradigm for making live VM migration more seamless. Exploiting the characteristics of SDN such as its centralized view on network states, we contribute to the body of knowledge by enhancing the quality of intra- and inter-DC live migration. Firstly, for intra-DC migration, we provide an SDN-based solution which minimizes the service disruption by employing OpenFlow-based resiliency mechanisms to prepare a DC network for migration proactively. Secondly, we improve the inter-DC live migration by accelerating the network convergence through announcing the migration in the control plane using MP-BGP protocol. Further, our proposed framework resolves the sub-optimal routing problem by conducting the gateway functionality at the SDN controller. Finally, with the ultimate goal of improving the inter-DC migration, we develop an SDN-based framework which automates the deployment, improves the management, enhances the performance, and increases the scalability of interconnections among DCs.

Abstract [en]

Live migration of Virtual Machines (VMs) has significantly improved the flexibility of modern Data Centers (DCs). Ideally, live migration ought to be seamless which requires a comprehensive support from the underlying network. However, legacy DC networks fall short to address the challenges of migration due to their inflexible and decentralized characteristics. In contrast, Software Defined Networking (SDN) is a new networking paradigm, which has the potential to improve the live migration thanks to its comprehensive view over the network, flexible structure, and its close integration with DC management infrastructures.

This thesis investigates networking challenges of short and long-haul live VM migration in SDN-based DCs. We propose solutions to make the intra- and inter-DC live migration procedures more seamless. Furthermore, our proposed SDN-based framework for inter-DC migration improves the management, enhances the performance, and increases the scalability of interconnections among DCs.

Place, publisher, year, edition, pages
Karlstad: Karlstads universitet, 2018. p. 25
Series
Karlstad University Studies, ISSN 1403-8099 ; 2018:55
Keywords
Data Center, Data Center Interconnection, EVPN, SDN, VM Migration
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-70166 (URN)978-91-7063-896-1 (ISBN)978-91-7063-991-3 (ISBN)
Presentation
2018-12-19, Universitetsgatan 2, Karlstad, 09:15 (English)
Opponent
Supervisors
Projects
HITS, 4707
Funder
Knowledge Foundation
Available from: 2018-11-28 Created: 2018-11-19 Last updated: 2019-11-07Bibliographically approved
Alizadeh Noghani, K., Hernandez Benet, C., Kassler, A., Marotta, A., Jestin, P. & Srivastava, V. V. (2017). Automating Ethernet VPN deployment in SDN-based Data Centers. In: 2017 Fourth International Conference on Software Defined Systems (SDS).: . Paper presented at Fourth International Conference on Software Defined Systems (SDS) 2017. 8-11 May, 2017. Valencia, Spain. (pp. 61-66). IEEE
Open this publication in new window or tab >>Automating Ethernet VPN deployment in SDN-based Data Centers
Show others...
2017 (English)In: 2017 Fourth International Conference on Software Defined Systems (SDS)., IEEE, 2017, p. 61-66Conference paper, Published paper (Refereed)
Abstract [en]

Layer 2 Virtual Private Network (L2VPN) is widely deployed in both service provider networks and enterprises. However, legacy L2VPN solutions have scalability limitations in the context of Data Center (DC) interconnection and networking which require new approaches that address the requirements of service providers for virtual private cloud services. Recently, Ethernet VPN (EVPN) has been proposed to address many of those concerns and vendors started to deploy EVPN based solutions in DC edge routers. However, manual configuration leads to a time-consuming, error-prone configuration and high operational costs. Automating the EVPN deployment from cloud platforms such as OpenStack enhances both the deployment and flexibility of EVPN Instances (EVIs). This paper proposes a Software Defined Network (SDN) based framework that automates the EVPN deployment and management inside SDN-based DCs using OpenStack and OpenDaylight (ODL). We implemented and extended several modules inside ODL controller to manage and interact with EVIs and an interface to OpenStack that allows the deployment and configuration of EVIs. We conclude with scalability analysis of our solution.

Place, publisher, year, edition, pages
IEEE, 2017
Keywords
cloud computing, computer centres, local area networks, software defined networking, virtual private networks
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-65144 (URN)10.1109/SDS.2017.7939142 (DOI)000405190400010 ()978-1-5386-2855-3 (ISBN)
Conference
Fourth International Conference on Software Defined Systems (SDS) 2017. 8-11 May, 2017. Valencia, Spain.
Projects
HITS
Funder
Knowledge Foundation
Available from: 2017-11-09 Created: 2017-11-09 Last updated: 2019-12-12Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-9866-8209

Search in DiVA

Show all publications