Please wait ... |

Link to record
http://kau.diva-portal.org/smash/person.jsf?pid=authority-person:3644 $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt122_recordDirectLink",{id:"formSmash:upper:j_idt122:recordDirectLink",widgetVar:"widget_formSmash_upper_j_idt122_recordDirectLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt122_j_idt124",{id:"formSmash:upper:j_idt122:j_idt124",widgetVar:"widget_formSmash_upper_j_idt122_j_idt124",target:"formSmash:upper:j_idt122:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Direct link

Barza, Sorina, Associate professororcid.org/0000-0002-1172-0113

Open this publication in new window or tab >>Factorizations of Weighted Hardy Inequalities### Barza, Sorina

### Marcoci, Anca N.

### Marcoci, Liviu G.

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_some",{id:"formSmash:j_idt184:0:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_otherAuthors",{id:"formSmash:j_idt184:0:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_otherAuthors",multiple:true}); 2018 (English)In: Bulletin of the Brazilian Mathematical Society, ISSN 1678-7544, E-ISSN 1678-7714, Vol. 49, no 4, p. 915-932Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Springer, 2018
##### Keywords

Factorization of function spaces, Hardy averaging integral operator, Cesàro spaces, Copson spaces
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:kau:diva-67308 (URN)10.1007/s00574-018-0087-7 (DOI)000451286300012 ()2-s2.0-85046028031 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt359",{id:"formSmash:j_idt184:0:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt365",{id:"formSmash:j_idt184:0:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt371",{id:"formSmash:j_idt184:0:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt371",multiple:true});
#####

Available from: 2018-05-11 Created: 2018-05-11 Last updated: 2019-03-14Bibliographically approved

Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013).

Department of Mathematics and Computer Science, Technical University of Civil Engineering Bucharest, Romania.

Department of Mathematics and Computer Science, Technical University of Civil Engineering Bucharest, Romania.

We present factorizations of weighted Lebesgue, Cesàro and Copson spaces, for weights satisfying the conditions which assure the boundedness of the Hardy’s integral operator between weighted Lebesgue spaces. Our results enhance, among other, the best known forms of weighted Hardy inequalities.

Open this publication in new window or tab >>A new variational characterization of Sobolev spaces### Barza, Sorina

### Lind, Martin

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_some",{id:"formSmash:j_idt184:1:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_otherAuthors",{id:"formSmash:j_idt184:1:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_otherAuthors",multiple:true}); 2015 (English)In: Journal of Geometric Analysis, ISSN 1050-6926, E-ISSN 1559-002X, Vol. 25, no 4, p. 2185-2195Article in journal (Refereed) Published
##### Abstract [en]

##### Keywords

Sobolev spaces, differenntiable functions, pointwise Lipschitz continuity, Riesz-type p-variation
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:kau:diva-33265 (URN)10.1007/s12220-014-9508-z (DOI)000365472700003 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt359",{id:"formSmash:j_idt184:1:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt365",{id:"formSmash:j_idt184:1:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt371",{id:"formSmash:j_idt184:1:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt371",multiple:true});
#####

Available from: 2014-07-18 Created: 2014-07-18 Last updated: 2019-07-12Bibliographically approved

Karlstad University, Faculty of Technology and Science, Department of Mathematics.

Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science.

We obtain a new variational characterization of the Sobolev space $W_p^1(\Omega)$ (where $\Omega\subseteq\R^n$ and $p>n$). This is a generalization of a classical result of F. Riesz. We also consider some related results.

Open this publication in new window or tab >>Advances in Operator Cauchy-Schwarz Inequalities and their Reverses### Aldaz, J. M.

### Barza, Sorina

### Fujii, M.

### Moslehian, Mohammad Sal

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_some",{id:"formSmash:j_idt184:2:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_otherAuthors",{id:"formSmash:j_idt184:2:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_otherAuthors",multiple:true}); 2015 (English)In: Annals of Functional Analysis, ISSN 2008-8752, E-ISSN 2008-8752, Vol. 6, no 3, p. 275-295Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Tusi Mathematical Research Group, 2015
##### Keywords

History of mathematics, Operator inequality, operator geometric mean, Cauchy-Schwarz inequality
##### National Category

Mathematics
##### Research subject

Physics
##### Identifiers

urn:nbn:se:kau:diva-41652 (URN)10.15352/afa/06-3-20 (DOI)000353211900020 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt359",{id:"formSmash:j_idt184:2:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt365",{id:"formSmash:j_idt184:2:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt371",{id:"formSmash:j_idt184:2:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt371",multiple:true});
#####

Available from: 2016-04-11 Created: 2016-04-11 Last updated: 2017-08-14Bibliographically approved

Univ Autonoma Madrid, ICMAT, E-28049 Madrid, Spain.;Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain..

Karlstad University, Faculty of Technology and Science, Department of Mathematics.

Osaka Kyoiku Univ, Dept Math, Kashiwara, Osaka 5828582, Japan..

Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science.

The Cauchy-Schwarz (C-S) inequality is one of the most famous inequalities in mathematics. In this survey article, we first give a brief history of the inequality. Afterward, we present the C-S inequality for inner product spaces. Focusing on operator inequalities, we then review some significant recent developments of the C-S inequality and its reverses for Hilbert space operators and elements of Hilbert C*-modules. In particular, we pay special attention to an operator Wielandt inequality.

Open this publication in new window or tab >>Functions of bounded second *p*-variation### Barza, Sorina

### Silvestre, Pilar

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_some",{id:"formSmash:j_idt184:3:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_otherAuthors",{id:"formSmash:j_idt184:3:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_otherAuthors",multiple:true}); 2014 (English)In: Revista Matemática Complutense, ISSN 1139-1138, E-ISSN 1988-2807, Vol. 27, p. 69-91Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Natural Sciences Mathematics
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:kau:diva-30164 (URN)10.1007/s13163-013-0136-0 (DOI)000329968400004 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt359",{id:"formSmash:j_idt184:3:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt365",{id:"formSmash:j_idt184:3:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt371",{id:"formSmash:j_idt184:3:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt371",multiple:true});
#####

Available from: 2013-11-22 Created: 2013-11-22 Last updated: 2019-07-12Bibliographically approved

Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science.

Department of Mathematics and Systems Analysis, Aalto University, Finland.

The generalized functionals of Merentes type generate a scale of spaces connecting the class of functions of bounded second p -variation with the Sobolev space of functions with p-integrable second derivative. We prove some limiting relations for these functionals as well as sharp estimates in terms of the fractional modulus of order 2−1/p . These results extend the results in Lind (Math Inequal Appl 16:2139, 2013) for functions of bounded variation but are not consequence of the last.

Open this publication in new window or tab >>Some new sharp limit Hardy-type inequalities via convexity### Barza, Sorina

Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science.### Persson, Lars-Erik

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_some",{id:"formSmash:j_idt184:4:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_otherAuthors",{id:"formSmash:j_idt184:4:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_otherAuthors",multiple:true}); 2014 (English)In: Journal of inequalities and applications (Print), ISSN 1025-5834, E-ISSN 1029-242X, no 6Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Springer, 2014
##### Keywords

integral inequalities, Hardy-type inequalities, limit cases, sharp constants, convexity
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:kau:diva-32225 (URN)10.1186/1029-242X-2014-6 (DOI)000330699400006 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt359",{id:"formSmash:j_idt184:4:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt365",{id:"formSmash:j_idt184:4:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt371",{id:"formSmash:j_idt184:4:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt371",multiple:true});
#####

Available from: 2014-05-30 Created: 2014-05-30 Last updated: 2019-07-12Bibliographically approved

Luleå tekniska universitet.

Some new limit cases of Hardy-type inequalities are proved, discussed and compared. In particular, some new refinements of Bennett’s inequalities are proved. Each of these refined inequalities contain two constants, and both constants are in fact sharp. The technique in the proofs is new and based on some convexity arguments of independent interest.

Open this publication in new window or tab >>Optimal estimates in Lorentz spaces of sequences with an increasing weight### Barza, Sorina

### Marcoci, Anca Nicoleta

### Marcoci, Liviu Gabriel

### Persson, Lars-Erik

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_some",{id:"formSmash:j_idt184:5:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_otherAuthors",{id:"formSmash:j_idt184:5:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_otherAuthors",multiple:true}); 2013 (English)In: Proceedings of the Romanian Academy. Series A Mathematics, Physics, Technical Sciences, Information Science, ISSN 1454-9069, Vol. 14, no 1, p. 20-27Article in journal (Refereed) Published
##### Place, publisher, year, edition, pages

EDITURA ACAD ROMANE, 2013
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:kau:diva-29316 (URN)000317805300004 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt359",{id:"formSmash:j_idt184:5:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt365",{id:"formSmash:j_idt184:5:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt371",{id:"formSmash:j_idt184:5:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt371",multiple:true});
#####

Available from: 2013-10-07 Created: 2013-10-07 Last updated: 2019-07-12Bibliographically approved

Karlstad University, Faculty of Technology and Science, Department of Mathematics. Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science.

Technical University of Civil Engineering Bucharest, Department of Mathematics and Computer Science, Bucharest, Romania.

Technical University of Civil Engineering Bucharest, Department of Mathematics and Computer Science, Bucharest, Romania.

Luleå University of Technology, Department of Mathematics.

Open this publication in new window or tab >>Best constants between equivalent norms in Lorentz sequence spaces### Barza, Sorina

### Marcoci, A.N.

### Persson, L.-E.

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_some",{id:"formSmash:j_idt184:6:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_otherAuthors",{id:"formSmash:j_idt184:6:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_otherAuthors",multiple:true}); 2012 (English)In: Journal of Function Spaces and Applications, ISSN 0972-6802, E-ISSN 1758-4965, p. 1-19, article id 713534Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Hindawi Publishing Corporation, 2012
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:kau:diva-29315 (URN)10.1155/2012/713534 (DOI)000301411000001 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt359",{id:"formSmash:j_idt184:6:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt365",{id:"formSmash:j_idt184:6:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt371",{id:"formSmash:j_idt184:6:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt371",multiple:true});
#####

##### Note

Karlstad University, Faculty of Technology and Science, Department of Mathematics.

Department of Mathematics and Computer Science, Technical University of Civil Engineering Bucharest, Romania.

Department of Mathematics, Luleå University of Technology.

We find the best constants in inequalities relating the standard norm, the dual norm, and the norm ‖𝑥‖(𝑝,𝑠)∑∶=inf{𝑘‖𝑥(𝑘)‖𝑝,𝑠}, where the infimum is taken over all finite representations ∑𝑥=𝑘𝑥(𝑘) in the classical Lorentz sequence spaces. A crucial point in this analysis is the concept of level sequence, which we introduce and discuss. As an application, we derive the best constant in the triangle inequality for such spaces.

Art. ID 713534, 19 pages

Available from: 2013-10-07 Created: 2013-10-07 Last updated: 2019-12-18Bibliographically approvedOpen this publication in new window or tab >>Strong and weak weighted norm inequalities for the geometric fractional maximal operator### Barza, Sorina

### Niculescu, Constantin P.

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_some",{id:"formSmash:j_idt184:7:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_otherAuthors",{id:"formSmash:j_idt184:7:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_otherAuthors",multiple:true}); 2012 (English)In: Bulletin of the Australian Mathematical Society, ISSN 0004-9727, E-ISSN 1755-1633, Vol. 86, no 2, p. 205-215Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Cambridge University Press, 2012
##### Keywords

geometrical maximal operator, weighted Lebesgue space, strong-/weak-type inequality
##### National Category

Geometry
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:kau:diva-15605 (URN)10.1017/S0004972712000147 (DOI)000309783300005 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt359",{id:"formSmash:j_idt184:7:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt365",{id:"formSmash:j_idt184:7:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt371",{id:"formSmash:j_idt184:7:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt371",multiple:true});
#####

Available from: 2012-11-14 Created: 2012-11-14 Last updated: 2020-01-03Bibliographically approved

Karlstad University, Faculty of Technology and Science, Department of Mathematics.

We characterise the strong- and weak-type boundedness of the geometric fractional maximal operator between weighted Lebesgue spaces in the case 0 < p ≤ q < ∞, generalising and improving some older results.

Open this publication in new window or tab >>Sharp constants between equivalent norms in weighted Lorentz spaces### Barza, Sorina

### Soria, Javier

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_some",{id:"formSmash:j_idt184:8:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_otherAuthors",{id:"formSmash:j_idt184:8:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_otherAuthors",multiple:true}); 2010 (English)In: Journal of the Australian Mathematical Society, ISSN 1446-7887, E-ISSN 1446-8107, Vol. 88, no 1, p. 19-27Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Cambridge: Cambridge University Press, 2010
##### Keywords

equivalent norms, level function, weighted Lorentz spaces, sharp constants, weights
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:kau:diva-9788 (URN)10.1017/S1446788709000469 (DOI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt359",{id:"formSmash:j_idt184:8:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt365",{id:"formSmash:j_idt184:8:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt371",{id:"formSmash:j_idt184:8:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt371",multiple:true});
#####

Available from: 2012-02-08 Created: 2012-02-08 Last updated: 2019-07-12Bibliographically approved

Karlstad University, Faculty of Technology and Science, Department of Mathematics.

Department of Applied Mathematics and Analysis, University of Barcelona, , Spain .

For an increasing weight *w* in *B*_{p} (or equivalently in *A*_{p}), we find the best constants for the inequalities relating the standard norm in the weighted Lorentz space Λ^{p}(*w*) and the dual norm.

Open this publication in new window or tab >>Sharp constants related to the triangle inequality in Lorentz spaces### Barza, Sorina

### Kolyada, Viktor

### Soria, Javier

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_some",{id:"formSmash:j_idt184:9:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_otherAuthors",{id:"formSmash:j_idt184:9:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_otherAuthors",multiple:true}); 2009 (English)In: Transactions of the American Mathematical Society, ISSN 0002-9947, E-ISSN 1088-6850, Vol. 361, no 10, p. 5555-5574Article in journal (Refereed) Published
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:kau:diva-9787 (URN)10.1090/S0002-9947-09-04739-4 (DOI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt359",{id:"formSmash:j_idt184:9:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt365",{id:"formSmash:j_idt184:9:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt371",{id:"formSmash:j_idt184:9:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt371",multiple:true});
#####

Available from: 2012-02-08 Created: 2012-02-08 Last updated: 2017-12-07Bibliographically approved

Karlstad University, Faculty of Technology and Science, Department of Mathematics.

Karlstad University, Faculty of Technology and Science, Department of Mathematics.

Department of Applied Mathematics and Analysis, University of Barcelona, Spain.