Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Miihkinen, Santeri
Publikationer (2 of 2) Visa alla publikationer
Lindström, M., Miihkinen, S. & Norrbo, D. (2022). Exact essential norm of generalized Hilbert matrix operators on classical analytic function spaces. Advances in Mathematics, 408, Article ID 108598.
Öppna denna publikation i ny flik eller fönster >>Exact essential norm of generalized Hilbert matrix operators on classical analytic function spaces
2022 (Engelska)Ingår i: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 408, artikel-id 108598Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We compute the exact value of the essential norm of ageneralized Hilbert matrix operator acting on weightedBergman spaces Apv and weighted Banach spaces H∞v ofanalytic functions, where v is a general radial weight. Inparticular, we obtain the exact value of the essential normof the classical Hilbert matrix operator on standard weightedBergman spaces Apα for p > 2 + α, α ≥ 0, and on Korenblumspaces H∞α for 0 < α < 1. We also cover the Hardy spaceHp, 1 < p < ∞, case. In the weighted Bergman space case, theessential norm of the Hilbert matrix is equal to the conjecturedvalue of its operator norm and similarly in the Hardy spacecase the essential norm and the operator norm coincide. Wealso compute the exact value of the norm of the Hilbert matrixon H∞wα with weights wα(z) = (1 − |z|)α for all 0 < α < 1. Also in this case, the values of the norm and essential normcoincide.

Ort, förlag, år, upplaga, sidor
Elsevier, 2022
Nyckelord
Hilbert matrix operator, Essential norm, Weighted composition operator, Weighted Bergman spaces, Weighted Banach spaces of analytic functions
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Matematik
Identifikatorer
urn:nbn:se:kau:diva-91581 (URN)10.1016/j.aim.2022.108598 (DOI)000860763500021 ()2-s2.0-85135531364 (Scopus ID)
Forskningsfinansiär
Finlands Akademi, 296718
Tillgänglig från: 2022-08-24 Skapad: 2022-08-24 Senast uppdaterad: 2022-10-27Bibliografiskt granskad
Gissy, H., Miihkinen, S. & Virtanen, J. A. (2021). On the Exponential Integrability of Conjugate Functions. Journal of Fourier Analysis and Applications, 27(6), Article ID 87.
Öppna denna publikation i ny flik eller fönster >>On the Exponential Integrability of Conjugate Functions
2021 (Engelska)Ingår i: Journal of Fourier Analysis and Applications, ISSN 1069-5869, E-ISSN 1531-5851, Vol. 27, nr 6, artikel-id 87Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We relate the exponential integrability of the conjugate function (f) over tilde to the size of the gap in the essential range of f. Our main result complements a related theorem of Zygmund.

Ort, förlag, år, upplaga, sidor
Birkhäuser Verlag, 2021
Nyckelord
Exponential integrability, Conjugate function, Hilbert transform, Outer functions
Nationell ämneskategori
Matematisk analys
Forskningsämne
Matematik
Identifikatorer
urn:nbn:se:kau:diva-87286 (URN)10.1007/s00041-021-09885-4 (DOI)000708487200001 ()2-s2.0-85117604107 (Scopus ID)
Tillgänglig från: 2021-11-22 Skapad: 2021-11-22 Senast uppdaterad: 2022-02-28Bibliografiskt granskad
Organisationer

Sök vidare i DiVA

Visa alla publikationer