Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Publikationer (10 of 76) Visa alla publikationer
Fuchs, J. & Schweigert, C. (2019). Full Logarithmic Conformal Field theory — an Attempt at a Status Report: LMS/EPSRC Durham Symposium on Higher Structures in M-Theory. Fortschritte der Physik, Article ID 1910018.
Öppna denna publikation i ny flik eller fönster >>Full Logarithmic Conformal Field theory — an Attempt at a Status Report: LMS/EPSRC Durham Symposium on Higher Structures in M-Theory
2019 (Engelska)Ingår i: Fortschritte der Physik, ISSN 0015-8208, E-ISSN 1521-3978, artikel-id 1910018Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Logarithmic conformal field theories are based on vertex algebras with non-semisimple representation categories. While examples of such theories have been known for more than 25 years, some crucial aspects of local logarithmic CFTs have been understood only recently, with the help of a description of conformal blocks by modular functors. We present some of these results, both about bulk fields and about boundary fields and boundary states. We also describe some recent progress towards a derived modular functor. This is a summary of work with Terry Gannon, Simon Lentner, Svea Mierach, Gregor Schaumann and Yorck Sommerhäuser.

Ort, förlag, år, upplaga, sidor
Wiley-VCH Verlag, 2019
Nyckelord
Lego-Teichmüller game, logarithmic conformal field theory, modular Frobenius algebra, modular functor, modular tensor category
Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:kau:diva-72524 (URN)10.1002/prop.201910018 (DOI)2-s2.0-85066011661 (Scopus ID)
Tillgänglig från: 2019-06-13 Skapad: 2019-06-13 Senast uppdaterad: 2019-06-13Bibliografiskt granskad
Fuchs, J., Gannon, T., Schaumann, G. & Schweigert, C. (2018). The logarithmic Cardy case: Boundary states and annuli. Nuclear Physics B, 930, 287-327
Öppna denna publikation i ny flik eller fönster >>The logarithmic Cardy case: Boundary states and annuli
2018 (Engelska)Ingår i: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 930, s. 287-327Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present a model-independent study of boundary states in the Cardy case that covers all conformal field theories for which the representation category of the chiral algebra is a – not necessarily semisimple – modular tensor category. This class, which we call finite CFTs, includes all rational theories, but goes much beyond these, and in particular comprises many logarithmic conformal field theories. We show that the following two postulates for a Cardy case are compatible beyond rational CFT and lead to a universal description of boundary states that realizes a standard mathematical setup: First, for bulk fields, the pairing of left and right movers is given by (a coend involving) charge conjugation; and second, the boundary conditions are given by the objects of the category of chiral data. For rational theories our proposal reproduces the familiar result for the boundary states of the Cardy case. Further, with the help of sewing we compute annulus amplitudes. Our results show in particular that these possess an interpretation as partition functions, a constraint that for generic finite CFTs is much more restrictive than for rational ones.

Ort, förlag, år, upplaga, sidor
Elsevier, 2018
Nationell ämneskategori
Matematik Fysik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kau:diva-66940 (URN)10.1016/j.nuclphysb.2018.03.005 (DOI)000435647100012 ()2-s2.0-85044165224 (Scopus ID)
Tillgänglig från: 2018-04-06 Skapad: 2018-04-06 Senast uppdaterad: 2018-09-05Bibliografiskt granskad
Fuchs, J., Schaumann, G. & Schweigert, C. (2017). A trace for bimodule categories. Applied Categorical Structures, 25(2), 227-268
Öppna denna publikation i ny flik eller fönster >>A trace for bimodule categories
2017 (Engelska)Ingår i: Applied Categorical Structures, ISSN 0927-2852, E-ISSN 1572-9095, Vol. 25, nr 2, s. 227-268Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We study a 2-functor that assigns to a bimodule category over a finite k-linear tensor category a k-linear abelian category. This 2-functor can be regarded as a category-valued tracefor 1-morphisms in the tricategory of finite tensor categories. It is defined by a universalproperty that is a categorification of Hochschild homology of bimodules over an algebra.We present several equivalent realizations of this 2-functor and show that it has a coherent cyclic invariance.Our results have applications to categories associated to circles in three-dimensional topological field theories with defects. This is made explicit for the subclass of Dijkgraaf-Wittentopological field theories.

Nationell ämneskategori
Annan matematik
Forskningsämne
Matematik
Identifikatorer
urn:nbn:se:kau:diva-45611 (URN)10.1007/s10485-016-9425-3 (DOI)000399877600004 ()
Forskningsfinansiär
Vetenskapsrådet, 621-2013-4207
Tillgänglig från: 2016-08-31 Skapad: 2016-08-31 Senast uppdaterad: 2019-06-17Bibliografiskt granskad
Fuchs, J. & Schweigert, C. (2017). Coends in conformal field theory. In: Katrina Barron, Elizabeth Jurisich, Antun Milas, Kailash Misra (Ed.), Lie Algebras, Vertex Operator Algebras, and Related Topics: (pp. 65-81). American Mathematical Society (AMS)
Öppna denna publikation i ny flik eller fönster >>Coends in conformal field theory
2017 (Engelska)Ingår i: Lie Algebras, Vertex Operator Algebras, and Related Topics / [ed] Katrina Barron, Elizabeth Jurisich, Antun Milas, Kailash Misra, American Mathematical Society (AMS), 2017, s. 65-81Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

The idea of "summing over all intermediate states" that is central for implementing locality in quantum systems can be realized by coend constructions. In the concrete case of systems of conformal blocks for a certain class of conformal vertex algebras, one deals with coends in functor categories. Working with these coends involves quite a few subtleties which, even though they have in principle already been understood twenty years ago, have not been sufficiently appreciated by the conformal field theory community.

Ort, förlag, år, upplaga, sidor
American Mathematical Society (AMS), 2017
Serie
Contemporary Mathematics ; 695
Nationell ämneskategori
Subatomär fysik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kau:diva-63716 (URN)10.1090/conm/695/13996 (DOI)000431843300006 ()978-1-4704-2666-8 (ISBN)978-1-4704-4196-8 (ISBN)
Tillgänglig från: 2017-09-14 Skapad: 2017-09-14 Senast uppdaterad: 2019-08-02Bibliografiskt granskad
Fuchs, J. & Schweigert, C. (2017). Consistent systems of correlators in non-semisimple conformal field theory. Advances in Mathematics, 307, 598-639
Öppna denna publikation i ny flik eller fönster >>Consistent systems of correlators in non-semisimple conformal field theory
2017 (Engelska)Ingår i: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 307, s. 598-639Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Based on the modular functor associated with a -- not necessarily semisimple -- finite non-degenerate ribbon category D, we present a definition of a consistent system of bulk field correlators for a conformal field theory which comprises invariance under mapping class group actions and compatibility with the sewing of surfaces. We show that when restricting to surfaces of genus zero such systems are in bijection with commutative symmetric Frobenius algebras in D, while for surfaces of any genus they are in bijection with modular Frobenius algebras in D. This provides additional insight into structures familiar from rational conformal field theories and extends them to rigid logarithmic conformal field theories.

Ort, förlag, år, upplaga, sidor
Academic Press, 2017
Nationell ämneskategori
Subatomär fysik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kau:diva-63715 (URN)10.1016/j.aim.2016.11.020 (DOI)000409285300015 ()
Forskningsfinansiär
Vetenskapsrådet, 621-2013-4207
Tillgänglig från: 2017-09-14 Skapad: 2017-09-14 Senast uppdaterad: 2019-06-17Bibliografiskt granskad
Fuchs, J. & Schweigert, C. (2017). Low-dimensional topology, low-dimensional field theory and representation theory. In: Krause, H Littelmann, P Malle, G Neeb, KH Schweigert, C (Ed.), Representation theory: Current trends and perspectives. Paper presented at Research Priority Programme SPP 1388 "Representation theory", Hamburg Universität (pp. 255-267). European Mathematical Society Publishing House
Öppna denna publikation i ny flik eller fönster >>Low-dimensional topology, low-dimensional field theory and representation theory
2017 (Engelska)Ingår i: Representation theory: Current trends and perspectives / [ed] Krause, H Littelmann, P Malle, G Neeb, KH Schweigert, C, European Mathematical Society Publishing House, 2017, s. 255-267Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Structures in low-dimensional topology and low-dimensional geometry often combined with ideas from (quantum) field theory can explain and inspire concepts in algebra and in representation theory and their categorified versions. We present a personal view on some of these instances which have appeared within the Research Priority Programme SPP 1388 "Representation theory".

Ort, förlag, år, upplaga, sidor
European Mathematical Society Publishing House, 2017
Serie
Hamburger Beiträge zur Mathematik ; 571
Nyckelord
Topological field theory, tensor categories, categorification
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:kau:diva-65475 (URN)000398985900010 ()
Konferens
Research Priority Programme SPP 1388 "Representation theory", Hamburg Universität
Tillgänglig från: 2017-12-29 Skapad: 2017-12-29 Senast uppdaterad: 2018-06-26Bibliografiskt granskad
Fuchs, J. & Schweigert, C. (2016). Symmetries and defects in three-dimensional topological field theory. In: Vincent Bouchard, Charles Doran, Stefan Méndez-Diez, Callum Quigley (Ed.), Proceedings of Symposia in Pure Mathematics: . Paper presented at Conference on String Math 2014 (pp. 21-40). Providence: American Mathematical Society (AMS), 93
Öppna denna publikation i ny flik eller fönster >>Symmetries and defects in three-dimensional topological field theory
2016 (Engelska)Ingår i: Proceedings of Symposia in Pure Mathematics, Providence: American Mathematical Society (AMS), 2016, Vol. 93, s. 21-40Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Boundary conditions and defects of any codimension are natural parts of any quantum field theory. Surface defects in three-dimensionaltopological field theories of Turaev-Reshetikhin type have applications to two-dimensional conformal field theories, in solid state physics and in quantumcomputing. We explain an obstruction to the existence of surface defects thattakes values in a Witt group. We then turn to surface defects in Dijkgraaf-Witten theories and their construction in terms of relative bundles; this allowsone to exhibit Brauer-Picard groups as symmetry groups of three-dimensionaltopological field theories.

Ort, förlag, år, upplaga, sidor
Providence: American Mathematical Society (AMS), 2016
Serie
Proceedings of Symposia in Pure Mathematics, ISSN 2324-707X
Nyckelord
Topological field theory; tensor categories; topological defects; Brauer-Picard group
Nationell ämneskategori
Subatomär fysik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kau:diva-45610 (URN)000379639000002 ()978-1-4704-1992-9 (ISBN)
Konferens
Conference on String Math 2014
Forskningsfinansiär
Vetenskapsrådet, 621-2013-4207
Tillgänglig från: 2016-08-31 Skapad: 2016-08-31 Senast uppdaterad: 2019-06-17Bibliografiskt granskad
Fuchs, J., Priel, J., Schweigert, C. & Valentino, A. (2015). On the Brauer Groups of Symmetries of Abelian Dijkgraaf-Witten Theories. Communications in Mathematical Physics, 339(2), 385-405
Öppna denna publikation i ny flik eller fönster >>On the Brauer Groups of Symmetries of Abelian Dijkgraaf-Witten Theories
2015 (Engelska)Ingår i: Communications in Mathematical Physics, ISSN 0010-3616, E-ISSN 1432-0916, Vol. 339, nr 2, s. 385-405Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Symmetries of three-dimensional topological field theories are naturally defined in terms of invertible topological surface defects. Symmetry groups are thus Brauer-Picard groups. We present a gauge theoretic realization of all symmetries of abelian Dijkgraaf-Witten theories. The symmetry group for a Dijkgraaf-Witten theory with gauge group a finite abelian group A, and with vanishing 3-cocycle, is generated by group automorphisms of A, by automorphisms of the trivial Chern-Simons 2-gerbe on the stack of A-bundles, and by partial e-m dualities. We show that transmission functors naturally extracted from extended topological field theories with surface defects give a physical realization of the bijection between invertible bimodule categories of a fusion category and braided auto-equivalences of its Drinfeld center . The latter provides the labels for bulk Wilson lines; it follows that a symmetry is completely characterized by its action on bulk Wilson lines.

Nationell ämneskategori
Fysik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kau:diva-41597 (URN)10.1007/s00220-015-2420-y (DOI)000358130400003 ()
Tillgänglig från: 2016-04-11 Skapad: 2016-04-11 Senast uppdaterad: 2017-11-30Bibliografiskt granskad
Buchberger, I. & Fuchs, J. (2015). On the Killing form of Lie Algebras in Symmetric Ribbon Categories. SIGMA. Symmetry, Integrability and Geometry, 11, Article ID 017.
Öppna denna publikation i ny flik eller fönster >>On the Killing form of Lie Algebras in Symmetric Ribbon Categories
2015 (Engelska)Ingår i: SIGMA. Symmetry, Integrability and Geometry, ISSN 1815-0659, E-ISSN 1815-0659, Vol. 11, artikel-id 017Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

As a step towards the structure theory of Lie algebras in symmetric monoidal categories we establish results involving the Killing form. The proper categorical setting for discussing these issues are symmetric ribbon categories.

Ort, förlag, år, upplaga, sidor
NATL ACAD SCI UKRAINE, 2015
Nyckelord
Lie algebra, monoidal category, Killing form, Lie superalgebra
Nationell ämneskategori
Fysik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kau:diva-41659 (URN)10.3842/SIGMA.2015.017 (DOI)000350561700001 ()
Tillgänglig från: 2016-04-11 Skapad: 2016-04-11 Senast uppdaterad: 2017-11-30Bibliografiskt granskad
Fuchs, J. & Schweigert, C. (2015). Surface defects and symmetries. In: XXXTH International Colloquium on Group Theoretical Methods in Physics (ICGTMP) (GROUP30): . Paper presented at 30th International Colloquium on Group Theoretical Methods in Physics (ICGTMP), Jul 14-18, 2014, Ghent, Belgium. Institute of Physics (IOP), Article ID 012002.
Öppna denna publikation i ny flik eller fönster >>Surface defects and symmetries
2015 (Engelska)Ingår i: XXXTH International Colloquium on Group Theoretical Methods in Physics (ICGTMP) (GROUP30), Institute of Physics (IOP), 2015, artikel-id 012002Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In quantum field theory, defects of various codimensions are natural ingredients and carry a lot of interesting information. In this contribution we concentrate on topological quantum field theories in three dimensions, with a particular focus on Dijkgraaf-Witten theories with abelian gauge group. Surface defects in Dijkgraaf-Witten theories have applications in solid state physics, topological quantum computing and conformal field theory. We explain that symmetries in these topological field theories are naturally defined in terms of invertible topological surface defects and are thus Brauer-Picard groups.

Ort, förlag, år, upplaga, sidor
Institute of Physics (IOP), 2015
Serie
Journal of Physics Conference Series, ISSN 1742-6588 ; 597
Nationell ämneskategori
Fysik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kau:diva-41650 (URN)10.1088/1742-6596/597/1/012002 (DOI)000354929400002 ()
Konferens
30th International Colloquium on Group Theoretical Methods in Physics (ICGTMP), Jul 14-18, 2014, Ghent, Belgium
Tillgänglig från: 2016-04-11 Skapad: 2016-04-11 Senast uppdaterad: 2016-05-31Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-4081-6234

Sök vidare i DiVA

Visa alla publikationer