Skydd mot yterosion i slänter av finmorän

granskning av metoder och dimensionering

Surface Erosion Control in Till Slopes
Survey of Methods and Dimensioning

Niklas Larsson
Sammanfattning

Slänter som skärs i finmoränjordar utsätts för erosion av nederbörd och flödande vatten från terrängen ovanför. Stora arealer av vägslänter förses därför med beklädnader som skydd mot yterosion. Även förebyggande åtgärder som dikning och dränering förekommer. Siltig moränjord är särskilt besvärlig eftersom vattnet kan orsaka jordflytning och skred.

I arbetet har olika typer av skydd studerats och särskilt metoden med beklädnad av krossat bergmaterial. Behovet av krossbeklädnad, dimensioneringsprinciper och utföranden har granskats med litteratur- och fältstudier. Ett alternativ är biologiska skydd, som är bättre ur hållbarhetsperspektiv.

Resultaten tyder på att

- avrinningen från ovanförliggande terräng inte kartläggs tillräckligt
- överdiken inte använts i den utsträckning som vore befogat
- det praktiska utförandet lämnar en del övrigt att önska
- kornstorleken och tjockleken hos krossbeklädnader kan minskas
- principen att välja kornstorlek efter ytvattnets strömningshastighet är svår att använda
- alltför stora ytor okritiskt täcks med kross
- biologiska skydd i många fall kan ersätta beklädnader
- kombinationen av tunnare krossbeklädnad, med finare korn, och gräs eller plantor är ett tilltalande och effektivt erosionsskydd
Abstract
Slopes in fine till soils are exposed to surface erosion due to rainfall, snowmelt and upland water sources. Large areas of road slopes are therefore covered for surface erosion protection. Preventive methods like ditches and trenches are also being used. Silt tills are particularly troublesome since the water can bring the soil into suspension and cause mudslides.

Different methods for erosion protection have been studied in this work, with the emphasis placed on rockfill covering. The need for and the dimensioning of this type of covering has been examined in literature and field studies. Biological protection methods are alternatives that synergize better with ambitions for sustainable development.

The results indicate that

- drainage from upland sources is not properly surveyed
- ditches and trenches are not used often enough
- the rockfill covering could have been carried out more accurately
- grain size and thickness of the protective layer could both be downsized
- the relation principle between grain size and flow rate is hard to use
- large spaces are unnecessarily covered with gravel
- biological types of cover could in many cases work just as well
- a combination of rockfill with finer fractions, and grass or plants is an appealing alternative to the coarse gravel
Innehåll

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Utskriftsposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Inledning</td>
<td>ii</td>
</tr>
<tr>
<td>1. Inledning</td>
<td>1</td>
</tr>
<tr>
<td>2. Erosionsproblemet</td>
<td>3</td>
</tr>
<tr>
<td>Slänter, erosion och slamströmmar</td>
<td>3</td>
</tr>
<tr>
<td>Vattenmängder och klimat</td>
<td>6</td>
</tr>
<tr>
<td>Morän – förekomst och egenskaper</td>
<td>7</td>
</tr>
<tr>
<td>Myndigheternas riskbedömningar och förebyggande arbete</td>
<td>11</td>
</tr>
<tr>
<td>Skyddsåtgärder mot yterosion</td>
<td>16</td>
</tr>
<tr>
<td>Miljökonsekvenser</td>
<td>16</td>
</tr>
<tr>
<td>Ekonomi</td>
<td>17</td>
</tr>
<tr>
<td>Åtgärder – allmänt</td>
<td>18</td>
</tr>
<tr>
<td>Minskning av vattenflödet</td>
<td>18</td>
</tr>
<tr>
<td>Stabiliserande täckning/beklädnad</td>
<td>20</td>
</tr>
<tr>
<td>Omhändertagande av slam och vatten</td>
<td>25</td>
</tr>
<tr>
<td>Teori för korn i vattenström</td>
<td>27</td>
</tr>
<tr>
<td>Dimensionering av skydd</td>
<td>30</td>
</tr>
<tr>
<td>Flöde och hastighet</td>
<td>35</td>
</tr>
<tr>
<td>Hastighet och kornstorlek – jämförelser</td>
<td>37</td>
</tr>
<tr>
<td>Fältstudier</td>
<td>39</td>
</tr>
<tr>
<td>Urval av slänter</td>
<td>39</td>
</tr>
<tr>
<td>Observationer och mätningar</td>
<td>41</td>
</tr>
<tr>
<td>3. Resultat och analys</td>
<td>43</td>
</tr>
<tr>
<td>Inledning</td>
<td>43</td>
</tr>
<tr>
<td>Slänt 1</td>
<td>43</td>
</tr>
<tr>
<td>Slänt 2</td>
<td>45</td>
</tr>
<tr>
<td>Slänt 3</td>
<td>45</td>
</tr>
<tr>
<td>Slänt 4</td>
<td>47</td>
</tr>
<tr>
<td>Slänt 5</td>
<td>48</td>
</tr>
<tr>
<td>Slänt 6</td>
<td>49</td>
</tr>
<tr>
<td>Slänt 7</td>
<td>50</td>
</tr>
<tr>
<td>Slänt 8</td>
<td>51</td>
</tr>
</tbody>
</table>
1. Inledning

I arbetet redovisas bakgrunden i form av förekomster och konsekvenser av erosion, ras och skred. Beskrivningar av moräntyper och erosion, speciellt yterosion, ingår och etablerade åtgärder, för att förhindra eller minska erosionen, presenteras. Dimensioneringsmetoderna utgår oftast från erosion i vatten, men de flesta slänter är torra, i bemärkelsen att de endast tillfälligt utsätts för stora flöden med höga strömningshastigheter. Standardmetoden för erosionsskydd innebär att slänten täcks med ett tjockt lager grov samkross. Om tjockleken kunde minskas skulle stora besparingskostnader kunna göras. Mera bruk av växter skulle också innebära besparningar beroende på färre tunga transporter och mindre åtgång av bergmaterial. Finare fraktioner kombinerade med växter är en kombinerad åtgärd som också vore tilltalande. En noggrann inventering av förhållandena ovanför släntkrönen, med avseende på lutning, vattensamlingar, bäckar och liknande är en förutsättning för att göra riktiga val av erosionsskydd.

Erosion i slänter är, med ökande risk för stora nederbördsmängder och flöden, ett stort problem för samhället och för enskilda. Vid snösmältning och perioder med stor nederbörd kan ytskiktet spolas bort och i siltiga och leriga moränslänter uppstår då jordflytning och slamströmmar som kan ge stora sekundära skador. Vägar och byggnader kan skadas av jordmassorna som transporteras nedför slänterna och reparationskostnaderna blir mycket stora. Problemet har observerats av regering, riksdag och flera myndigheter, länsstyrelser och kommuner deltar i arbetet med riskbedömning och beredskapsplaner.

Borterosion av ytskiktet är ibland den primära orsaken till efterföljande problem, även om det inte alltid är fallet. De mest uppmärksammade fallen av skred och ras beskrivs först när konsekvenserna blivit riktigt allvarliga, med avskurna vägar, stora slamtransporter mm.
Utredningar gjorda i efterhand visar inte sällan att processen sannolikt startat med yterosion beroende på stora vattenflöden. I moränslänter, speciellt siltiga sådana, tenderar också det lösa översta jordlaget att bli flytande, vilket kan äventyra släntens stabilitet och orsaka skred. Valen av erosionsskydd är inte unika för siltig morän, men eftersom den jordarten är särskilt besvärlig är det också särskilt viktigt att lyckas med valet. De praktikfall som studeras i arbetet är vägslänter i finmorän.

Syftet har alltså varit att undersöka erosionsskydd för tillfälligt vattenbemängda slänter av finmorän och skilja ut de bästa typerna, avseende funktion, resursanvändning och minimering av skador på naturen. Undersökningen har gjorts med jämförande litteratur- och fältstudier för ett antal moränslänter i västra Värmland. Objekten i fältstudierna var skärningsslänter utefter vägar och vid en småhustomt och de har granskats med avseende på teori, regler och verkliga förhållanden.

Målet med arbetet har varit

- att bedöma och värdera olika metoder för yterosionsskydd
- att utvärdera dimensioneringsmetoder och utföranden
- att kunna föreslå mindre resurskrävande och mera hållbara alternativ
2. Erosionsproblemet

Slänter, erosion och slamströmmar
Erosion är en naturlig process som innebär att jordmaterial transportereras bort av vatten, snö, is och vind. Även vittring och sprängning kan hänsöras till erosion. Så kallad inre erosion, eller grundvattenerosion, förekommer mest i friktionsjordar. Erosion i vatten är ett problem som finns längs de flesta stränder och i samband med ökade översvämningsrisken har det fått mycket stor uppmärksamhet. Det här arbetet fokuserar på yterosion i moränslänter.

Vattenflöde är den viktigaste orsaken till yterosion och de löst sammanbundna jordarterna påverkas mest. Den vattenbemängda torrskorpan kan i sig själv vara en vätska. Rörelseenergin och rörelsemängden hos vattnet överförs till jordpartiklarna och får dem att lossna. Häftiga regn bidrar till att slå loss korn från underlaget. Vattnet eroderar finkornigt material som förs vidare nedför slänten och när partiklarna slammas upp i vattnet blästras under-

![Erosionsprocessen](image_url)

Figur 1. Erosionsprocessen.

laget och därmed förstärks erosionseffekten ytterligare. Större korn kan till att börja med dämpa erosionen, men med ökande hastighet börjar också större partiklar att lossna, lyfts och sedan förflyttas. Fördelnings av kornstorlek tillsammans med kornens form har betydelse för hur erosionen framskridit. Erosionen kan ske jämnt över ytan eller så bildas rillor, färar och raviner. I sådana färar ökar vattnets hastighet, vilket accelererar erosionen. Stora vattenflöden, höga hastigheter och branta slänter kan göra att jord, träd och buskar följer med strömmen nedför slänten. De fina moränfraktionerna som slammas upp i vattnet bildar en grötliknande,
Vattenbemängd jordmassa som flyter nedför slänten som en trögflytande vätska. Dessa slamströmmar kan orsaka mycket stora skador. Det lösgjorda materialet som förflyttas blottlägger nya, eventuellt känsliga ytor, och på väg nedför slänten kan ytterligare skador uppstå i form av skred och ras. Vid släntfoten, eller där lutningen minskar, ansamlas sedan slammet, där det då bland annat kan orsaka fördämningar.

Figur 2. Ravinbildning och andra erosionsskador. (Government of Alberta, 2011)

Vattenflödet och hastigheten påverkas av terrängens form och den kan ha skapats naturligt eller vara resultatet av olika ingrepp, som förändrad geometri, schaktning, fyllning och dikning. Även förändrad användning av omkringliggande mark, som asfaltering, avverkning, o dyl. kan påverka vattnets rörelser. Smältning av is och snö kan ta med sig stenar och jord och på så sätt förändra flödena och detsamma gäller för häftiga regnskurar.

Figur 3. Gränshastighet och erosionskänslighet för olika kornstorlekar. (Trafikverket, 1987)

stenar är som väntat inte lika lätta att flytta. De mest finkorniga materialen kräver en något större vattenhastighet och det beror på att de små partiklarna klibbar ihop med kohesion och därför är något mera motståndskraftiga. Leriga och siltiga moräner har korn i storleksordningen tusendels till hundradels mm och gränshastigheten för sådana jordar är några dm/s. Vattnets hastighet i yterosionsbenägna slänter av typen vägslänter är som regel inte högre än ca 3 m/s, oftast lägre (Trafikverket, 2012b).

Jordens erosionskänslighet påverkas alltså av flera parametrar och alla måste beaktas vid riskbedömning. Samtidigt är kändedom om dem till stor hjälp vid utformning av täckande erosionsskydd.

Erosionen pågår kontinuerligt och påskyndas av stora vattenflöden. Ras kan inträffa av andra orsaker än erosion, t ex urschaktning vid foten eller ökad last på krönet, men erosionen ökar riskerna. Exempelvis kan en eroderad släntfot i vatten dramatickt minska den mothållande
kraften vid foten. Ihållande nederbörd påskyndar erosionen men höjer också portrycket i jorden, vilket gör att dess hållfasthet minskar och därmed ökar risken för att glidytor uppstår och därmed orsakar skred. En sekundär effekt av slamströmmarna kan vara att uppkomna fördämningar medför vattenbemärgd jord med sämre hållfasthet och med ökad skredrisk som resultat.

Vattenmängder och klimat

Yterosionen på grund av vatten ökar i samband med perioder med mycket regn och vid vårens snösmältning. Vattenbemärgd jord med låg hållfasthet, av typen mättad torrskorpa, och dessutom höga flöden, orsakar accelererad erosion. Om jordens infiltrationskapacitet är begränsad på grund av att porerna är vattenfyllda så uppstår ytvattning och därmed yterosion.

Problemen med mycket nederbörd och stora flöden har tydliggjorts vid de perioder med extremvärder som förekommit på senare tid. Prognoserna för framtiden är omdebatterade och delvis motstridiga.

SMHI:s årsvisa statistik visar förändringar av temperatur, nederbörd och vattenflöden på kort sikt. Långsiktigt är bedömningarna osäkra (Sveriges meteorologiska och hydrologiska institut [SMHI], 2009a) men uttrycks som att statistiken och mätningarna tyder på “… ett mildare klimat och högre nederbörd och avrinning i norra Sverige, samtidigt som det blir varmare i södra Sverige utan större ändringar i årsnederbörd och avrinning.” Sambandet mellan nederbörd och avrinningsflöden hänger samman med markvattenhalten, dvs. markens fuktinnehåll från ytan till grundvattennivån. Det är därför svårt att entydigt bedöma riskerna för stora
ytflöden. SMHI säger dock också, med stöd av sina klimatberäkningar, att ”häftiga regn ökar för hela landet.” samt att ”extremer kan förändras på andra sätt än motsvarande medelvärden”, (SMHI, 2009b).

Klimat och sårbarhetsutredningen (SOU, 2007:60) går längre i fråga om klimatförändringarna och stödjer sig bl.a. på FN:s klimatpanel IPCC och egna beräkningsmodeller. Utredningens slutsats är att ”Huvuddragen i klimatscenarierna är trots osäkerheter tillräckligt robusta för att användas som underlag”. I utredningen talas om ökande nederbörd, flera dagar med stor nederbörd under höst, vinter och vår och större 100-årsflöden. Ett utpekat riskområde är sydvästra Svealand.

Från 2008 och framåt har SMHI gjort klimatanalys för de flesta av Sveriges län. För t ex Värmland sammanfattas nederbördsanalysen som att de intensiva regnen förväntas bli mera frekventa och att nederbörd mot slutet av seklet kan bli ca 20 % större än för närvarande, (SMHI, 2014).

Mera regn och särskilt intensiva regnperioder, av typen extremväder, kommer att öka avrinningen och därmed risken för erosionsskador och slamströmmar i moränslänter.

Morän – förekomst och egenskaper

Omkring 75 % av Sveriges yta täcks av morän av olika typer (Sveriges geologiska undersökning [SGU], 2014). Vanligast är sandiga och siltiga moräner. Egenskaperna, som hållfasthet, deformation, kapillaritet och permeabilitet, varierar mycket med samman-sättningen. Grovkorniga sand- och grusmoräner har i huvudsak samma egenskaper som friktionsjordar, medan finkorniga moräner av typen silt- och lermorän mera har karaktär av kohesionsjord. Bland annat binder de en större mängd vatten än de grusiga och sandiga
Tabell 1. Fraktionsindelning och benämningar enligt internationell standard. (Statens geotekniska institut [SGI], 2008a)

<table>
<thead>
<tr>
<th>Huvudfraktion</th>
<th>Underfraktioner</th>
<th>Beteckning</th>
<th>Fraktionsgränser mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycket grov jord</td>
<td>Stora block</td>
<td>LBo</td>
<td>> 630</td>
</tr>
<tr>
<td></td>
<td>Block</td>
<td>Bo</td>
<td>> 200 till 630</td>
</tr>
<tr>
<td></td>
<td>Sten</td>
<td>Co</td>
<td>> 63 till 200</td>
</tr>
<tr>
<td>Grovjord</td>
<td>Grus</td>
<td>Gr</td>
<td>> 2 till 63</td>
</tr>
<tr>
<td></td>
<td>Grovgrus</td>
<td>CGr</td>
<td>> 20 till 63</td>
</tr>
<tr>
<td></td>
<td>Mellangrus</td>
<td>MGr</td>
<td>> 6,3 till 20</td>
</tr>
<tr>
<td></td>
<td>Fingrus</td>
<td>FGr</td>
<td>> 2 till 6,3</td>
</tr>
<tr>
<td></td>
<td>Sand</td>
<td>Sa</td>
<td>> 0,063 till 2,0</td>
</tr>
<tr>
<td></td>
<td>Grovsand</td>
<td>CSa</td>
<td>> 0,63 till 2,0</td>
</tr>
<tr>
<td></td>
<td>Mellansand</td>
<td>MSa</td>
<td>> 0,2 till 0,63</td>
</tr>
<tr>
<td></td>
<td>Finsand</td>
<td>FSa</td>
<td>> 0,063 till 0,2</td>
</tr>
<tr>
<td>Finjord</td>
<td>Silt</td>
<td>Si</td>
<td>> 0,002 till 0,063</td>
</tr>
<tr>
<td></td>
<td>Grovsilt</td>
<td>CSI</td>
<td>> 0,02 till 0,063</td>
</tr>
<tr>
<td></td>
<td>Mellansilt</td>
<td>MSi</td>
<td>> 0,0063 till 0,02</td>
</tr>
<tr>
<td></td>
<td>Finsilt</td>
<td>FSi</td>
<td>> 0,002 till 0,0063</td>
</tr>
<tr>
<td></td>
<td>Ler</td>
<td>Cl</td>
<td>≤ 0,002</td>
</tr>
</tbody>
</table>

Figur 4. Typisk jordlagerföljd i moränmark.

Sveriges geologiska undersökningar, SGU, har kartmaterial som visar fördelningen av jordarter över landet, både totalt och för varje typ. Kartorna nedan, från SGU och SLU, Sveriges lantbruksuniversitet, figur 6 och 7, visar att moränmark finns över stora delar av Sverige och var finmorän är mest frekvent.

Figur 6. Morän i Sverige

(Sveriges lantbruksuniversitet [SLU], 2007a).

Figur 7. Finmoränförekomst.

(SLU, 2007b).

Begreppet morän används också i andra sammanhang för att beteckna landskapsformer.

![Diagram](image)

Figur 8. EU:s ramverk för erosionskontroll.
EU-rapportens slutord lyder:

Finally, soil scientists must work increasingly with scientists from other disciplines, for example biologists, geologists, chemists, mathematicians, statisticians, ecologists, social scientists and economists to address the problem of soil erosion. It is a complex problem requiring a multidisciplinary approach. There also needs to be general acceptance by the public and policy makers alike that society as a whole has been abusing the soil environment in Europe to such an extent that to do nothing in response could spell disaster for the future. Rectification and amelioration for past and present abuses will cost money and the richer countries must help the poorer countries in Europe in this endeavour. (Grimm, M, Jones, R. & Montanarella, L., 2002, s. 37)

Klimat och sårbarhetsutredningen behandlar flera aspekter av eventuella klimatförändringar, bland dessa ökade erosionsrisker. Ett par viktiga slutsatser är:

och

Erosion, skred, ras, slamströmmar och översvämningar skadar både naturen, bebyggelsen och infrastrukturen. Klimat- och sårbarhetsutredningen (SOU, 2007:60) har uppskattat att mer än 200 000 byggnader ligger i de områden där erosionsproblemen och risken för ras ökar. I framtiden gäller det att undvika bebyggelse i sådana områden, men för de fastigheter som redan finns krävs ett utökad skydd, både i form av förändringar av vattenflöden och olika typer av erosionsskydd. Speciellt vattenmättade moränsläneter är i riskzonen både för
erosionen i sig och för slamströmmar. Kostnaderna för förbättring av skydden för befintlig bebyggelse och infrastruktur är dock enorma.

Skyddsåtgärder mot yterosion

Åtgärderna för att minska yterosionsproblemet i slänter kan delas in i tre kategorier:

- Minskning av vattenflödet
- Stabiliserande täckning/beklädnad
- Omhändertagande av slam och vatten

För alla dessa åtgärder ställs det även andra krav än de rent funktionella. De miljömässiga kraven är en sådan aspekt och kostnaden för anläggning och underhåll är en annan. Minskning av flödet och täckning är preventiva åtgärder, medan slam- och vattenhantering kommer i andra hand för att förhindra ytterligare skador nedströms. Erosion i vattendrag på grund av vattenström och vågor behandlas inte i det här arbetet. I diken vid släntfoten finns det risk för att strömmen av vatten och slam accelererar erosionen och där kan det krävas särskilda åtgärder. Med yterosion i slänter menas här den erosion som förekommer vid kraftig nederbörd och snösmältning, då ytvatten strömmar nedför slänter som normalt inte är under vatten ("torra slänter").

Miljökonsekvenser

Vid anläggningsarbeten kan det uppstå stora störningar och skador på växt- och djurliv. Grävning, sprängning, schakt och materialtransporter medför skador, buller och utsläpp. Därför måste miljökonsekvensbeskrivningar göras vid alla större anläggningsarbeten. Landskapsbild, naturmiljö, kulturmiljö, boendemiljö och hushållning med naturresurser är viktiga inslag i sådana beskrivningar. Lagstiftningen utgörs av:

- Naturresurslagen (SFS, 1987:12)
- Plan- och bygglagen (SFS, 2010:900)
- Vattenlagen (SFS, 1983:291)
- Miljöbalken (SFS, 1998:808)
- Kulturmiljölagen (SFS, 1988:950)

Slänter är knappast isolerade projekt utan är istället delar av exempelvis vägbyggen och det totala projektets miljökonsekvensbeskrivning skall inkludera även slänterna.

Åssluttningar, raviner, bäckar och vattendrag är värdefulla miljöer för växter, fåglar, fiskar och andra djur. Vid släntarbeten skall den naturliga vegetationen sparas så långt det är möjligt och om den skadas så bör den återställas i liknande skick som den naturliga. Vissa av metoderna för täckning eller beklädnad av slänter har estetiska brister och kan skapa miljöer

De förebyggande metoderna, t.ex att gräva avskärande överdiken, kräver varsamhet med vegetationen och hjulspår efter anläggningsmaskiner kan ändra vattenflödet på ett ogynnsamt sätt. I byggskedet och speciellt vid grävning och schaktning i ytlagen kan det temporärt uppstå erosionsproblem med slamströmmar och sedimentering av vattendrag nedströms. Det sjunkande slammet kan förändra bottenstrukturen vilket i sin tur kan skada bottenlevande djur och växter, i värsta fall permanent. Sedimenteringens effekt beror på exponeringstiden. Ju längre perioder vattnet grumlas desto mer skador på djur och växter uppkommer. Små vattendrag är oftast mer känsliga. Åtgärder kan vara trumläggning, dikning eller sediment-bassänger och även då måste hänsyn tas till vegetation, utseende och kostnader.

Ekonomi

Åtgärder – allmänt

Det finns ett stort antal åtgärder som kan tillgripas för erosionsskydd och de är utförligt beskrivna i litteraturen. En inledande del av det här arbetet består av en sammanfattande beskrivning av dessa åtgärder. I rapportens senare del granskas praktikfall för vägslänter, där företrädesvis beklädnad av kross, växtetablering och terrängförhållanden ovanför slänten studeras. En sammanställning finns i rapporten ”Erosionsskydd i samband med förstärkningsåtgärder för slänter” (Skredkommissionen, 1994). Skredkommissionen är en del av Ingenjörsvetenskapsakademin, IVA. Beskrivningen nedan bygger till stora delar på den rapporten, men även andra källor förekommer, bl.a. från tillverkare av beklädnader. Förutom beskrivning av skyddens konstruktion ger Skredkommissionen i viss mån omdömen om metoderna, i form av lämplighet, erfarenheter och underhåll. De uppgifterna återges i korthet, men kommer senare att jämföras med praktikfallen. Fokus ligger på erosion i slänter under vatten men resultaten överförs av tradition också till yterosion ovanför vattenytan.

Trafikverket (förutvarande Vägverket) beskriver också erosionsskydd i slänter och hur de skall dimensioneras och utformas (Trafikverket, 2011a), (Trafikverket, 2005a), (Trafikverket, 2005b), (Trafikverket, 1987). I de senare rapporterna från Trafikverket (Trafikverket, 2012b) finns en tydligare skillnad mellan de olika problemen med erosion i vatten och yterosion i torra vägslänter. Trafikverket anser att för att 200 000 ha vägslänter i det statliga vägnätet (Naturvårdsverket, 1997) och har därför anledning att intressera sig för frågan.

Beklädnad av samkrossat bergmaterial är den vanligaste metoden för att förhindra yterosion. ”Ingenjörsvetenskapliga” metoder, dvs. växtlighet som skydd, är på frammarsch, bl. a i kombination med andra metoder.

Minskning av vattenflödet

Följande åtgärder begränsar/påverkar vattenflödet:

- Överdiken: Vattensjuk terräng, vattendrag, kalhyggen eller hårdgjorda ytor ovanför slänten kan göra att vattenflödet blir alltför stort. Avskärande dikning kan vara ett botemedel för att leda åtminstone delar av flödet vid sidan om slänten. Dikena kan göras som sneda avskäningar på ena sidan eller båda sidorna ovanför släntkrönet. Skredkommissionen anger ett måttintervall 1-5 m från släntkrön till dikeskrön samt ett lämpligt dikesdjup på minst 0,5 m, se figur 12. Saker att beakta här är att dikning innebär att vegetationen tas bort och att själva diket också kan eroderas. Lasten på släntkrönet från entreprenadmaskinerna är också en faktor. Dikning är mest aktuell
Figur 12. Måttkrav för överdike.

vid nyskurna släntrar i samband med andra anläggningsarbeten. När entreprenad-maskinerna finns på plats kan kostnaderna hållas nere och resultaten blir som regel goda. Trafikverket har ett regelverk för dikenas utformning och där anges att avståndet krön-krön bör vara minst 3 m när erosionsrisken och risken för svallis är stor.

Avloppen från dikena måste placeras så att inte erosionsskador uppstår på andra ställen. Öppna diken kan göras V-formade eller trapetsformade och som alternativ nämns också stenfyllt dike, figur 13, som i erosionskänslig jord förses med geotextil och dränering.

Öppna diken kan göras V-formade eller trapetsformade och som alternativ nämns också stenfyllt dike, figur 13, som i erosionskänslig jord förses med geotextil och dränering.

Stenfyllningen skall inte innehålla fina fraktioner som hindrar vattenföringen.

- **Dränering:** I de fall då bäckar och befintliga diken mynnar ut på ett släntkrön kan det vara svårt eller omöjligt att dika bort vatten sidledes och istället vara betydligt enklare att dränera vattnet rakt ned genom slänten. Det kan göras med dräneringsrörr, trummor eller i öppna kanaler. I kanaler kan då strömningshastigheten bli hög och där kan i så fall särskilt tåliga erosionsskydd, som t ex betongbeklädnad, bli aktuella. Dikena nedanför måste förstås också dimensioneras efter detta vattentillskott.

- **Vegetation:** Gräs, buskar och träd kan användas som erosionsskydd i slänten, men också preventivt för att minska vattenflödet neråt. Markens vatteninnehåll minskas genom att växterna suger upp nederbörden och markvatten. Ett stort träd konsumerar dagligen 300-400 liter vatten och lägre växtlighet ca 4 liter per kvadratmeter (SkogsSverige, 2000) och den reduktionen av vatten som når slänten kan vara betydelsefull.

- **Skogsavverkning:** Omfattande avverkning ovanför en slänt kan bli ödesdiger och stora slamströmmar nedströms hyggen är ingen ovanlig syn. Särskilt illa kan det gå om spårutbildningen från skördare och skotare riktar om flödena till utsatta delar.
Nyanläggningar ovanför slänten, som vägar, hus, skidbackar mm kan också styra om avrinningen och flödet på ett oynnsamt sätt. Metoder för att utreda avrinningen beskrivs i en rapport från MSB/Räddningsverket ”Översiktlig kartering av stabilitets- och avrinningsförhållanden i raviner och slänter i morän och grov sedimentjord – Metodbeskrivning” (MSB, 2007). Rapporten beskriver också hur slamströmmar kan uppstå och vilka parametrar som har betydelse i sammanhanget. Inverkan av framtida större avverkningar eller nya byggnadsprojekt uppströms är förstås svåra att ta med i projekteringen t ex då en väg skall byggas, så därför bör sådana förändringar bevakas och kommuniceras mellan berörda parter.

Stabiliserande täckning/beklädnad

Skredkommissionen listar följande allmänna krav på erosionsskyddet:

- ha tillräcklig hållfasthet
- vara vattengenomsläppligt
- hindra finare partiklar att sköljas ur
- ha godtagbar vikt
- vara tillräckligt flexibelt
- ge önskvärda flödesförhållanden
- ha ett acceptabelt utseende
- inte inverka menligt på miljön

Till detta kan läggas att kostnaderna, både initialt och för senare underhåll, skall vara acceptabla och att anläggningsarbetena skall gå att utföra utan extra skador.

Täckning eller beklädnad kan göras på följande sätt:

- **Samkross:** Samkross är krossat bergmaterial som innehåller alla fraktioner från stenmjöl, fraktion 0, och uppåt. De största kornen brukar ha typiska mått på 200-300 mm. Vattnets hastighet bestämmer största stenstorleken. Samkross passar för hastigheter upp till 3 m/s, vilket kan sägas motsvara en övre gräns för torra slänter. Underarbetet är inte speciellt krävande. Materialet läggs i ett skikt och lägre vegetation behöver inte tas bort. Kornformen är oregelbunden och de olika fraktionerna binder kornen bra. Stenmjölet är en fördel för senare komplettering med frösådd. Skador och underhåll går lätt att reparera genom att lägga på nytt material. Med tiden, då finare
korn sköljs bort, bildas en så kallad stenpäls av grövre korn. Erfarenheterna av samkrosstäckning är goda och det är den vanligaste täckningsmetoden.

Figur 14. Samkross.

Figur 15. Filter.
Nackdelar med textilen är att vegetationen måste röjas bort och att den riskerar att skadas samt att beständigheten kan vara begränsad. Förutom huvuduppgiften att begränsa erosionen kan tyngden av täckningen bidra till avvattning av ytskikten. Det gäller även samkross och betongbeklädnader.

- **Plastnät:** Nätstrukturer av plast, polyamid eller polypropen, monterade på geotextil kan placeras ut i slänten och fickorna, eller cellerna, kan därefter fyllas med stenmaterial. Tack vare nätet stannar kornen kvar även då hastigheten hos vattnet är relativt hög, upp till 3 m/s. Befintlig vegetation måste tas bort före läggningen, men ny vegetation kan etableras efteråt. Näten är lätt och plastmaterialen har hög hållfasthet och särskilt polypropen anses som ofarlig. Polypropendetaljer används bl. a som mänskliga reservdelar.

Figur 16. Plastnät på rulle. (Ecogrid, 2014).

- Växter: Växter i slänten har flera fördelar. Rötterna armerar jorden och försvårar erosionen och stjälkar och stammar likaså. Eftersom växterna suger vatten så minskar jordens vatteninnehåll, särskilt gäller detta ytvattnet och det bidrar också till minskad erosion. Tidigare har vegetationen ovanför slänten nämnts. En viktig fördel är att de ofta fula ingreppen i naturen återställs och döljs när gräs, buskar och träd så småningom får fäste. Enbart växter utgör trots allt ett begränsat skydd och höga flöden

Omhändertagande av slam och vatten

Reduktion av vattenflödet och stabiliserande slänttäckning kan sägas vara primära, preventiva åtgärder. Om ändå erosionen fortskriders och orsakar slamströmmar så behövs sekundära åtgärder för att ta hand om konsekvenserna. Bland annat kan problem uppstå i lägre liggande
terräng om den nås av stora flöden av vatten och slam. De här åtgärderna beskrivs bara mycket kortfattat nedan och de kommer inte att omfattas av den senare utvärderingen.

- **Avloppstrummor:**
 Trafikverkets publikationer (Trafikverket, 2005b; Trafikverket, 2011) innehåller föreskrifter för trummor, när det gäller dimensioner, läggning och underhåll. Det påpekas att trumman inte skall utgöra en ekologisk barriär utan bl. a tillåta samma vattenhastighet som den naturliga. Erosionsförebyggande täckning skall inte ske med skarpkantat material.

- **Dikesrensning:**
 Diken och dikesunderhåll behandlas också i de ovan nämnda publikationerna. Det rekommenderas bl. a att grässvål behålls för att minska erosionen.

- **Anläggning av sedimentdammar:**
 Sedimentdammar kan utföras i betong eller som spontar av stål eller plast. I de senare fallen fylls runt dammen. Plastdammar är lätt hanterliga och kan byggas i olika former och storlekar genom att moduler skjuts in i slitsar. De är ledbara och gjorda av polyeten returplast.

![Figur 22. Sedimentdamm.](Aqvis Miljöspont, 2014a) ![Figur 23. Spont](Aqvis Miljöspont, 2014b)

- **Återuppsyggnad av skadade delar:**
 Återfyllning av samkross och reparation av filterbäddar är relativt lätt att utföra och ny sådd eller ny plantering av vegetation är också okomplicerad. Om slam har nått ytan och förändrat geometrin så kan det behöva tas bort innan återfyllningen.
En kraftfull åtgärd av helt eget slag är att **ändra geometrin**. En flack slänt har mindre erosionsproblem än en brant. För problem i naturliga slänter är detta inget alternativ men vid nyanläggning bör man sträva efter flacka slänter. **Avschanting av torrskorpan** upptill är också av godo, eftersom den annars kan orsaka slamtransport, speciellt i första skedet efter anläggning. Åtgärden bör dock ställas mot nackdelen med att växtligheten tas bort. Särskilt utformad **dränning** i slänten kan också vara ett alternativ.

Teori för korn i vattenström

Figur 24 nedan visar strömningslinjer för ett halvcylindriskt korn under vatten. För vissa enklare geometriska former och antagandet att vätskan inte har någon viskositet, vilket approximativt kan göras för vatten, är det möjligt att beräkna lyftkraften och eventuellt dragkraften som strävar efter att släpa kornet med strömmen. För just ett halvcylindriskt korn är lyftkraften från flödet

\[F_L = \frac{5}{3} \rho \cdot v^2 \cdot R \cdot L + \rho \cdot R \cdot L \cdot (v^2 - v_b^2), \]
(Julien, 2010)

där \(\rho \) är vattnets densitet, \(R \) halvcylinderns radie och \(L \) dess längd. \(v \) är (ostörda) hastigheten långt från kornet och \(v_b \) är hastigheten under kornet (om den finns). Om kornet ligger på botten så är hastigheten under det lika med 0 och då blir lyftkraften

\[F_L = \frac{8}{3} \rho \cdot v^2 \cdot R \cdot L \]

och om hastigheten under kornet, \(v_b \), är lika stor som den orörda hastigheten, \(v \), så blir lyftkraften

\[F_L = \frac{5}{3} \rho \cdot v^2 \cdot R \cdot L \]

Tyngden av den undanträngda vätskan är

\[F_B = \frac{\pi \cdot R^2 \cdot L}{2} \rho \cdot g \]

och därför blir halvcylinderns "nettotyngd", om dess densitet är \(\rho_s \),

\[F_{HC} = \frac{\pi \cdot R^2 \cdot L}{2} (\rho_s - \rho) \cdot g \]
Gränsmålet att $F_L = F_{HC}$ representerar läget då kornet kan lyfta från botten och vattnets rörelsemängd kan då ge en impuls till kornet som får det att transporteras iväg med strömmen. När det lyftes från botten så kommer dock lyftkraften F_L att minska, vilket kan göra att ett tungt korn sjunker tillbaka och processen kan sedan upprepas. Den kan jämföras med en flagga som fladdrar i vinden beroende på störningar som orsakar flödesförändringar och omväxlande höga och låga tryck. I en verklig erosionsbeklädnad finns dock förstås många hinder mot att processen skall fortgå. Kornen har inte geometriskt väldefinierade former och det är ingen plan botten. Dessutom kommer korn i strömmen att kollidera med andra korn och korn som sjunker kan fastna bland korn som redan finns där och bilda stabila förband.

På liknande sätt kan uttryck tas fram för t ex ett halvsfäriskt korn och då blir lyftkraften

$$F_L = \frac{27}{32} \cdot \rho \cdot v^2 \cdot \pi \cdot R^2 - \frac{1}{2} \cdot \rho \cdot \pi \cdot R^2 \cdot v_b \cdot v$$

(Julien, 2010)

Om kornet ligger på botten så blir lyftkraften

$$F_L = \frac{27}{32} \cdot \rho \cdot v^2 \cdot \pi \cdot R^2$$

och om det svävar i strömmen, $v_b = v$, så blir den

$$F_L = \frac{11}{32} \cdot \rho \cdot v^2 \cdot \pi \cdot R^2$$

Nettotyngden för halvsfären är

$$F_{HS} = \frac{2 \cdot \pi \cdot R^2 L}{2} \cdot (\rho_s - \rho) \cdot g$$

Lyftkraften blir alltså större då kornen ligger på botten och formen på kornet har betydelse för hur stor lyftkraften blir. Dragkraften, som strävar efter att förflytta kornet i strömmens riktning, blir för kroppar som är symmetriska kring plan vinkelrät mot strömmen, t ex halvcylindriska eller halvsfäriska korn, lika med 0 om vätskan är icke-viskös. Med denna teori får en perfekt sfär uppe i vattenströmmen varken drag- eller lyftkrafter av strömmen, beroende på att strömningsbilden är symmetrisk åt alla håll. Teorin tillämpad på t ex en kvartssfär ger däremot både drag- och lyftkrafter och för oregelbundet formade korn, som i verkligheten, uppstår också både drag- och lyftkrafter. De symmetriska kornens orientering i strömmen kommer också, i en verklig beklädnad, att vara godtycklig, både när de ligger på botten och uppe i strömmen och därför påverkas även de av krafter. Dessutom är inte vattnets viskositet helt försumbar och kornets ”attackvinkel” (jämför flygplansvinge) mot strömmen.
tillsammans med viscositeten, kan orsaka skillnader i strömningsbilden och därmed trycks
tillskillnader. Viscositeten tillsammans med magnuseffekten ger också krafter på korn som av
någon anledning börjat rotera i strömmen. Kollisioner med andra korn och uppslammade
partiklar i strömmen och vattnets rörelseenergi gör att det flytande kornet förflyttas en bit, tills
det landar på botten och processen startar om.

Trots komplikationerna ovan om former, växelverkan med andra korn och viscositet kan det
ändå vara intressant att ta fram ett förenklat teoretiskt samband mellan hastighet och korn-
storlek, om inte annat så för att Trafikverket använder ett sådant samband för dimensionering
av erosionsskydd. Oavsett kornets form framgår det av ekvationerna att jämviktsläget då
lyftkraften på botten är lika med nettotyngden kan skrivas som
\[
k_1 \cdot \rho \cdot v^2 \cdot D^2 = k_2 \cdot (\rho_s - \rho) \cdot D^3,
\]
där D kan betraktas som en typisk dimensionsstorhet för kornet. Ibland är det en radie eller en
diameter och ibland en längd. När lyftkraften överskrids Nettotyngden initieras erosionen.
Om D löses ut ur denna ekvation och konstanterna och typiska densitetsvärden sätts in, så blir
resultatet formellt att
\[
D = k \cdot \frac{v^2}{k_2 \cdot (\rho_s - \rho)},
\]
och detta samband kan, i brist på bättre, användas för dimensionering av kornstorleken för
erosionsskydd. Om vattnets hastighet är känd så kan kornstorleken bestämmas (k ≈ 0,02).

Dimensionering av skydd
När det gäller betong, plastnät och gabioner står tillverkarna för dimensioneringen och när det
gäller stentäckning används sambandet mellan erforderlig kornstorlek och vattnets
strömningshastighet. Trafikverket anger att betong och gabioner kan ersätta krossat sten
material, men ger inga anvisningar för hur dimensioneringen skall gå till. För erosionsskydd
långs vägar är metoden med täckning av samkross vanligast och anledningarna är att den
fungerar bra och är enkel att utföra. Materialet kan ibland krossas på plats efter sprängning.
Eftersom stora ytor årligen täcks av samkross är dimensioneringen intressant, både när det
gäller kornstorlek och tjocklek. Trafikverket och Skredkommissionen använder ekvation (1)
som grund, men med tillägg, för dimensionering av kornstorleken för krossat material när det
gäller ”strömmande vatten” och det avses då ”erosion i vatten” och den skrivs som
\[D_{50} = 0,02 \cdot v_{dim}^2 \]
(Skredkommissionen, 1994)
(ekv.2)

där \(D_{50} \) är medelkornstorleken, enhet m, och \(v_{dim} \) är dimensionerande vattenhastighet, enhet m/s, som i sin tur beror av vattnets medelhastighet \(v_m \). För erosionsskydd i strömmande vatten anges \(v_{dim} = 1,5 \cdot v_m \) och för vägslänter anges \(v_{dim} = 1,3 \cdot v_m \) (Trafikverket 2011). I konstanten 0,02 ingår densiteter för vatten och sten. Största kornstorlek skall uppgå till minst 1,5 gånger \(D_{50} \). Exempelvis ger en medelhastighet på 1 m/s en medelkornstorlek på ca 35 mm och en största kornstorlek på ca 50 mm, medan medelhastigheten 2 m/s ger medelkornstorleken 135 mm och största storleken ca 200 mm. Den största medelvattenhastigheten vid 50-årsflöde skall användas som värde för \(v_m \).

Uppmätta gränshastigheter för olika kornstorlekar avser horisontella ytor men i slänter tillkommer tyngdkraften och därför blir gränshastigheten lägre i en slänt. Släntlutningen finns inte med i ekvationen ovan, men kurvor och tabeller för gränshastigheter för olika kornstorlekar och lutningar kan användas istället, se t ex figur 25 nedan. Det finns även ett mera allmänt samband, kallat Izbaschs ekvation, där lutningen ingår. Vägslänter i jord av moräntyp skall inte göras brantare än 1:3 – 1:2,5 (ca 20°) och kornstorleken ökas då, enligt kurvan nedan, ungefär med faktorn \(1/0,85 = 1,18 \). Medelkornstorleken för exempelvis hastigheten 2 m/s skulle då bli ca 235 mm och största kornens storlek skulle bli ca 350 mm.

![Diagram](image-url)
Vid dimensionering av krossat material används alltså vattens strömningshastighet för att bestämma kornstorleken och det är därför avgörande att kunna översätta vattenflödet till strömningshastighet. För vägslänter med typiska lutningar blir hastigheten knappast högre än 3 m/s, men redan vid 2 m/s ger metoden ovan stora korn. Inte ens 300 mm-korn ”klarar” med denna metod egentliga hastigheten 2 m/s. I anvisningarna står att erosionsskyddet kan utformas efter särskild utredning om $D_{50} > 400$ mm. Beräkning av hastigheten kan i princip ske med Mannings formel men den innehåller många mycket osäkra faktorer för flöde i terräng. Mätning av ytvtavenheten vid häftiga regn och snösmältning är pålitligare och kan göras på enkelt sätt med stoppur. Mera om flöden och hastigheter följer senare.

Rekommenderade skiktjocklekar för samkross och filter finns också i litteraturen (Skredkommissionen, 1984). För samkross i strömmande vatten anges t ex en minsta tjocklek av 500 mm och för filter finns regler för skiktjocklekena, se t ex figur 15. För vägslänter finns anvisningar både i den äldre ATB Väg 2005 (Trafikverket, 2005a), (Trafikverket, 2005b) och den nyare ”TK Geo 11 Trafikverkets tekniska krav för geokonstruktioner” (Trafikverket, 2011). Figur 26 nedan visar minsta skiktjocklek för vägslänter.

![Figur 9.2-1. Minsta tjocklek hos släntskydd av jord- och krossmaterial på skärnings- och fyllningsslänt.](image)

Tabell 9.2-2. Släntskyddets tjocklek vid släntfot, b (m) enligt Figur 9.2-1.

<table>
<thead>
<tr>
<th>Slånhöjd, H (m)</th>
<th>Klimatzon</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4</td>
<td>1 - 2</td>
</tr>
<tr>
<td>4 - 7</td>
<td>0,3</td>
</tr>
<tr>
<td>7 - 10</td>
<td>0,4</td>
</tr>
<tr>
<td>> 10</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Figur 26. **Tjocklek för erosionsskydd i vägslänter.** (Trafikverket, 2011).

Trafikverket, Statens Vegvesen och företaget Vectura (nu Sweco) har föreslagit en revidering av avsnitten om erosion i den senaste TK Geo 13 (Trafikverket, 2012b). Där sägs att de etablerade grundprinciperna (Trafikverket, 1987) skall användas fortfarande, men med
justeringar av vissa parametrar. Det nya förslaget skall användas för hastigheter upp till 2-3 m/s och lutningar upp till 1:1,5 och det är fortfarande erosion i vatten som avses. Trafikverkets översiktliga rekommendation för vägslänter i tabellen nedan ger inga upplysningar om kornstorlek eller skiktjocklek.

Tabell 2. Rekommenderat erosionsskydd i vägslänter. (Trafikverket, 2011).

<table>
<thead>
<tr>
<th>Material</th>
<th>Fyllningslänt</th>
<th>Skärningsslänt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grovkornig jordart:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mänggraderad med grovgrus och sten</td>
<td>skydd behövs inte</td>
<td>skydd behövs inte</td>
</tr>
<tr>
<td>övrig grovkornig jordart</td>
<td>vegetation</td>
<td>vegetation</td>
</tr>
<tr>
<td>Blandkornig jordart:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mänggraderad med grovgrus och sten</td>
<td>skydd behövs inte</td>
<td>vegetation eller jord- och krossmaterial vid hög grundvattennivå i kallt klimat</td>
</tr>
<tr>
<td>övrig blandkornig jordart</td>
<td>vegetation</td>
<td>jord- och krossmaterial vid hög grundvattennivå i kallt klimat, vegetation i övriga fall</td>
</tr>
<tr>
<td>Finkornig jordart:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lerhalt ≤ 40%</td>
<td>Jord- och krossmaterial</td>
<td>jord- och krossmaterial</td>
</tr>
<tr>
<td>lerhalt > 40%</td>
<td>vegetation</td>
<td>vegetation</td>
</tr>
</tbody>
</table>

1) Stenklädd rädda anordnas längs vingmur och ned till släntfot.
2) Ytvatten från vägynan avvattnas till brunn, skärningsside eller räna i fyllningslänt.
3) Överdike anordnas om terrängen lutar mot skärning.

Betonmadrasser finns i olika utföranden, se t.ex figur 19 och figur 20. Tillverkarna har uppgifter om dimensioner för olika vattenhastigheter. Ett exempel är filterpunktmdrasser från Foreshore Protection som i Sverige marknadsförs av företaget Tecomatic. För aktuella vattenhastigheter kan man i tabell enligt nedan välja lämplig madrastyp:

<table>
<thead>
<tr>
<th>Madrass</th>
<th>Tjocklek</th>
<th>Vikt per m²</th>
<th>Vattenhastighet</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 100</td>
<td>55 mm</td>
<td>65 kg</td>
<td>2 m/sek</td>
</tr>
<tr>
<td>FP 125</td>
<td>65 mm</td>
<td>89 kg</td>
<td>4 m/sek</td>
</tr>
</tbody>
</table>

När det gäller val av geotextilier har ett antal parametrar betydelse och Trafikverket har i avsnitt 8.2 i TK Geo 11 (Trafikverket, 2011) regler för materialen.

För plastnäten som fylls med stenmaterial anger inte tillverkarna uppgifter om vilka strömningshastigheter näten passar för, utan ger i stället hållfasthetsdata mm. Fyllningen med sten kan överslagsmässigt väljas efter samma regler som övriga krossade beklädnader, men
kornstorleken måste också passa ihop med nätmaskorna. Det bör gå att bortse från vissa av de faktorer som används för att öka kornstorleken vid dimensioneringen av kross. Exempelvis bör inte ökningen av kornstorlek på grund av släntlutning ha samma betydelse med nåt eftersom kornen är fångade i nätet. Skredkommissionen anger att nät kan användas för ytvattenhastigheter upp till 3 m/s (Skredkommissionen, 1994).

För växter är det vanskligt att använda vattenhastigheten som utgångspunkt för dimensionering eftersom förmågan att klara strömmande vatten skiljer sig markant åt vid sådd och plantering jämfört med då växterna är etablerade och har utvecklat rotsystem. Växtplatsen, jordarter, hydrologiska förhållanden, naturvärden och anpassning till befintlig växtlighet är sådant som måste vägas in vid val av växter. Stabilisering av jorden kan göras med häckar, lager av grenar och rotade plantor, och ytersionsskyddet är grässädd, direkt i slänten eller kombinerad med mattor av jute eller kokos. En kombination av t ex samkross med något finare fraktion än normalt och gräs eller mattor är också en mycket användbar metod.

I SGI-rapporten ”Växter som skydd mot erosion och ytliga ras i branta jordslänter” (SGI, 2008b) redovisas resultaten av försök med ”ingenjörsbiologiska” metoder, alltså växter, för ett antal slänter. I rapportens senare del beskrivs ett område i Bydalen, i norra delen av Oviksfjällen, där växtetablering i moränslänter har studerats. Nederbörd, hydrologiska förhållanden och portryck ingår i undersökningen, men variationerna är stora och kopplingar till resultaten är svåra att göra. Till sist avgörs experimenten helt enkelt genom att inspektera växterna och hålla utkik efter erosion. Slänterna har inte belagts med krossmaterial eftersom syftet med försöken var att studera växternas effekt. De flesta åtgärderna har fungerat bra och inga större ytersionsproblem eller slamströmning har uppstått. Plantorna har tagit sig bra och även gräset, där kokosmatta har använts. I rapportens slutsatser sägs bl. a
Enbart ingenjörshistoriska metoder är inte tillräckliga som erosionsskydd i jordar med stor tjälskutande förmåga, så som silt och siltig lera. Dock kan de fungera bra i jordar där silt ingår men inte är huvudjordart, så som siltig morän. (SGI, 2008b)

Trafikverket redovisar i rapporten ”Växtlighet i vägmiljö – praktiska råd” (Trafikverket, 2011b) samlade erfarenheter av vegetationsanvändning utmed vägar, bl. a för slänter. Figur 27 visar kostnaden för anläggning av ”teknisk vegetation” som definieras som ”anlagd vegetation med rent teknisk funktion: att skydda och stabilisera slänter mot ras och erosion”.

Länsstyrelsen i Västra Götalands län konstaterar att:

Biologiska erosionsskydd är ett bra åtgärdsalternativ ur naturvårdsperspektiv i jämförelse med andra erosionsåtgärder. De kan bland annat bidra till att höja den biologiska mångfalden genom de arter som etableras och de habitat som växtligheten bildar (Västra Götaland, 2013)

I samma rapport anges att biologiska skydd kan fungera för vattenhastigheter som är så höga som 3-4 m/s. Växtbeklädnaderna har också en viss självläkande förmåga när skador uppstår.

Flöde och hastighet

Vid hög grundvattennivå, i samband med snösmältning och kraftig nederbörd vattenmättas silt- och lermoränernas lösa ytskikt. Portycket blir högt och ytskiktet mister sin hållfasthet. Regn- och smältvatten som inte kan ta sig ner i den mättade jorden kommer att rinna av på ytan och orsaka erosion.

En etablerad metod för flödesberäkning är den s.k. rationella metoden. Det dimensionerande flödet q_{dim}, l/s, beräknas då med formeln

$$ q_{\text{dim}} = A \cdot \varphi \cdot i(t_r) , $$

där

A är avrinningsområdets area, ha

φ är avrinningskoefficienten

$i(t_r)$ hämtas ur s.k. regnintensitets-varaktighetskurvor.

Tillvägagångssättet kräver att det aktuella området har tillräckliga mätdata så att vattenflödet till och från området kan uppskattas på ett bra sätt. Områdets area delas i mindre delområden med olika avrinningskoefficienter som i bästa möjliga mån stämmer överens med verkligheten. Exempelvis används för berg i dagen med stark lutning $\varphi = 0,8$, medan för flack tättbevuxen skogsmark $\varphi = 0-0,1$. En sammanlagd avrinningskoefficient för alla delområdena kan sedan beräknas som ett viktat medelvärde. I flack skogsmark i Värmland skulle ett 10-års regn med en varaktighet på ca 15 min på en yta av ca 10 hektar ge ett flöde på 180 l/s. Flödet i eventuella bäckar eller andra ledningar adderas till det uträknade flödet efter sammanställningen. Ett område med en tillströmning på 100 l/s skulle alltså ge totala flödet 280 l/s.

Om flödena ackumuleras för den aktuella sträckan kan sedan totala flödet mot det slänptparti som är i fokus bestämmas. Det är dock ett mycket ungefärligt värde och bäckar eller hinder för vattenflödet kan göra att beräkningsmetoden tappar sin noggrannhet avsevärt. Metoden innehåller också många andra osäkra faktorer.

Eftersom det är medelhastigheten hos vattnet som skall användas för att bedöma erosions-skyddet så tillkommer ytterligare en mycket osäker beräkning. Mannings formel kan i teorin användas för att översätta flödet till hastighet, men det är mycket svårt att uppskatta bottenförhållanden, area eller vattendjup just där vattnet letar sig ner.
Därmed återstår fältmätning av hastigheten vid högvatten. Längs de släntkrön där det med ledning av terrängen går att upptäcka risker för avrinning kan hastigheten mätas, i princip med tumstock och stoppur, genom att något flytande föremål släpps i strömmen. Medelvärdet av ett antal mätningar på samma ställe ger en bra bild. Det är visserligen tidskrävande att göra, men kostnaden jämförd med eventuella felaktiga val av erosionsskydd är ändå försumbar.

Hastighet och kornstorlek – jämförelser

Jämförelsen och ifrågasättandena nedan görs som en bakgrund och förklaring till fält-studiernas granskning av kornstorlekar i de krosstäckta slänterna.

Mätningarna som ligger till grund för den kurva över gränshastigheten som funktion av kornstorleken representerar verkliga förhållanden för enstaka korn på ett plant underlag. Kurvan kan jämföras med Skredkommissionens och Trafikverkets formel, (ekv.2)

\[D_{50} = 0.02 \cdot v_{\text{dim}}^2 \]

och med den "teoretiska" formeln, (ekv.1)

\[D = k \cdot v^2. \]

Värdet på konstanten, k, kan sättas till ca 0,019 för lågturbulent flöde typiskt för vattendrag och med densiteten 2650 kg/m³ för stenmaterial. Trafikverket använder en dimensionerande hastighet som är 30 % större än medelhastigheten. Om hastigheten mäts på ytan så kan det ifrågasättas om den behöver räknas upp, eftersom största hastigheten finns vid ytan. Trafikverket gör ytterligare en uppräkning av största kornstorleken, \(D_{\text{max}} \), med 50 % efter beräkning av \(D_{50} \). Även det kan ifrågasättas, bl. a eftersom de oregelbundna krossade kornen bildar ett slags förband. Transporten av korn som tenderar att lyftas, försvåras av angränsande
korn. Tabell 4 nedan visar resultatet av beräkningar av största kornstorleken, dels med Trafikverkets metod och dels utan extra påslag. Korrektion för släntlutning är inte gjord, eftersom syftet är att jämföra med den uppmätta kurvan som avser plant underlag.

Tabell 4. Kornstorlek som funktion av strömningshastighet.

<table>
<thead>
<tr>
<th>v (m/s)</th>
<th>0,4</th>
<th>0,8</th>
<th>1,2</th>
<th>1,6</th>
<th>2,0</th>
<th>2,4</th>
<th>2,8</th>
<th>3,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>D<sub>max</sub> (mm)</td>
<td>8</td>
<td>32</td>
<td>73</td>
<td>130</td>
<td>203</td>
<td>292</td>
<td>397</td>
<td>456</td>
</tr>
<tr>
<td>D (mm)</td>
<td>3</td>
<td>12</td>
<td>27</td>
<td>49</td>
<td>76</td>
<td>109</td>
<td>149</td>
<td>171</td>
</tr>
</tbody>
</table>

Dessa värden inlagda i figuren med de uppmätta värdena ger följande utseende, figur 29, där den undre kurvan motsvarar Trafikverkets metod (ekv.2) och den övre motsvarar den teoretiska formeln (ekv.1).

Figur 29. Jämförelse av beräkningsmetoder för och mätningar av kornstorlek.

För en given hastighet stämmer alltså den teoretiska formeln utan extra påslag ganska väl överens med de uppmätta kornstorlekenarna, medan Trafikverkets metod ger kornstorlekar som är betydligt större, ca 2,7 gånger större än de teoretiska och de uppmätta. Även om en viss säkerhetsfaktor är befogad så antyder detta att det skulle gå att använda finare fraktioner i erosionsskydden. Om divisor för släntlutning väljs till 0,8 så blir största kornstorleken för de lutningar och högsta hastigheter som kan komma ifråga för nyanlagda vägslänter ca 200 mm. Detta är också en vanlig storlek i verkliga slänter, men speciellt i äldre slänter förekommer även 300 mm. Om inventering av terrängen, med åtföljande övertäkten och dränering görs, bör
ytflöden med hastigheter över 2 m/s vara mycket sällsynta i vägslänter. Detta motsvarar, med samma lutningsdivisor som ovan, korn med storlek 100 mm. För själva vägbanen används ofta både 0-150 och 0-90, det senare som utjämningslager, och 150 respektive 90 mm är en kornstorlek som skulle passa bättre även i slänterna. Samkross med beteckningen 0-150 innehåller dessutom i verkligheten många betydligt större korn än 150 mm.

Skyddets tjocklek beräknas enligt Trafikverket utgående från största kornstorleken, så en eventuell minskning av kornstorleken medför en motsvarande minskning av tjockleken, om principen bibehålls. Eftersom stenmjölet och de finare kornen kommer att tvättas ur och sköljas bort så minskar tjockleken i takt med att stenpälsen av grövre korn utbildas. Om tjockleken skulle väljas till dubbla största kornstorleken så finns förutsättningen för att stenarna skall kunna bilda förband, dvs. att de hjälps åt att hålla varandra kvar. Komplettering med grässaäd eller annan växtlighet förbättrar också situationen. Varaktigheten hos de stora flödena kommenteras inte i källorna, men bör ha betydelse speciellt om växtlighet tas med i beräkningen. En viss återhämtning och självkläckande förmåga kan förekomma när flödet avtar eller upphör.

Fältstudier
Nedan beskrivs hur den praktiska delen av arbetet, i form av observationer och mätningar i fält, har gått till väga.

Urval av slänter

1 Holger Ledin, Ledins grus AB, 2014-04-08.
Figur 30. Slänt 1 och 8-10. Jössefors, Åmotfors. (Google Earth).

Efter rekognoscering valdes slänter av olika kategorier:

- utan skydd
- med kross
- med bara vegetation
- med både kross och vegetation
- med synbara skador
- med kända vattenflöden

Endast erosionsskydd av typen kross och/eller vegetation finns representerade bland de valda slänterna. Jordningställda släntkrön fanns på några ställen, men överdiken och dränning saknades.

Trafikverket, SGI, MSB, VTI m fl. har kontaktats under arbetets gång, men har inte lämnat några synpunkter eller någon övrig information.

Observationer och mätningar

Slänterna besiktigades både vid krön och fot och fotograferades. Fotona visas i resultatredovisningen. Jordarten kontrollerades på det sätt som beskrivs i kapitel 7 i SGI-rapporten ”Handledning i jordartsklassificering för mindre markvärmesystem”, (SGI, 2003), dvs. genom att knäda och krama en nypa jord och se om den liknar ”mjöl”. I några fall har det varit svårt att avgöra om moränen varit siltig, sandig eller lerig. Slänterna kontrollerades med avseende på eventuella erosionsskador, skred och spår av slamströmmar. Avschaktning och tilljämning av krön samt växtlighet i slänten studerades också. Terrängen ovanför krönen undersöktes relativt noga för att upptäcka vattensamlingar och hur vatten i så fall skulle kunna nå slänten.

Största kornstörleken i beklädda slänter mättes med tumstock. Beroende på kornens orientering kan materialet klassas som 0-150 trots att de största kornen mätta i någon riktning är 200-250 mm och på motsvarande sätt kan långa korn i 0-200 vara 300 mm eller mera. I redovisningen anges den största uppmätta kornstörleken. Förekomsten av eventuella ansamlingar av mindre korn nedströms undersöktes. Tjockleken för vägslänternas krossbeklädnad kunde inte mätas, eftersom beklädnaden då kunde ha förstörts. En allmän observation var ändå att den tycktes variera betydligt.
Lutning och höjd bestämdes med käppar, tumstock och måttband som figuren nedan visar.

![Diagram of slope measurement](image)

Figur 33. Mätning av slänt för bestämning av lutning och höjd.

Lutningsvinkeln ν beräknades som $\nu = \arctan\frac{0.5}{a} = \arctan\frac{1}{2a}$

och slänthöjden H som $H = L \cdot \sin \nu$.

Värdena för vinkel och höjd användes i huvudsak för att kategorisera slänter som branta eller flacka respektive höga eller låga och därför fick ögonmått duga för att kontrollera att stickan var vågrät och käppen lodrät. Kvantitativa mått för lutning och höjd anges dock för varje slänt.

Eftersom nästan alla vägslänter var i stort sett torra på ytan så kunde inga mätningar av vattenhastigheter göras, men de gjordes däremot för slänt nummer 10, vid småhustomten, och för diket, tidigare under våren 2014. En 2 m lång tumstock placerades i slänten och tiden för transport av små korkbitar mättes tre gånger, varefter medelhastigheten beräknades.

Resultaten från exkursionerna fördes in i ett protokoll, se bilaga A, och anteckningarna redovisas redigerade, tillsammans med fotona, i kapitel 3, kallat Resultat och analys. Där återfinns observationer och mätdata, slänt för slänt, tillsammans med en analys och be- dömning av åtgärderna och avsnittet avlutades med en sammanfattande tabell. Den samlade, allmänna diskussionen av regelverket för erosionsskydd och de studerade slänterna finns i kapitel 4, Diskussion.
3. Resultat och analys

Inledning
Som nämnts tidigare förekom inget flödande vatten vid perioden då fältstudierna av vägslänterna gjordes (vecka 13 och 14, 2014) och tjockleken på krossbeklädnaderna gick heller inte att mäta. Vädret var torrt och all snö hade smält i månadsskiftet mars-april 2014. I ett par fall fanns små rännilar av vatten där slänterna hade skadats, annars var de torra på ytan. Det var ändå lätt att upptäcka vattensjuk mark och vattensamlingar ovanför krönen och i förekommande fall syntes också tydligt vilken väg vattnet tagit nedför slänten. Likaså var det lätt att upptäcka flytjordsegenskaper i några slänter, dvs. att ytlagret var vattenmättat och mjukt.

För slänt nummer 10 och för diket däremot, mättes vattenhastigheten vid flera tidigare tillfällen.

Slänt 1
Läge: vid riksväg 61, Klätten, mellan Arvika och Åmotfors, strax norr om tidigare nämnda Öjenäsbacken.

Lutning vinkel v=18°, 1:3
Längd L=17,5 m, Höjd H= 5,5 m

Beskrivning: Hög slänt i siltig morän, största korn ca 250 mm, ofullständig täckning, släntkrön inte avschaktat eller tilljämnat, oländig terräng ovanför krön, terrängen ovanför lutar bitvis brant mot slänten, flera vattensamlingar ovanför krön, lokala stora temporära flöden ovanför krön enligt vidtalad markägare 2, inga avskärande diken, små, planterade, ej frösådda, granplantor, ingen annan vegetation, skred orsakat av jordflytning, kross har flutit ned mot diket och kan orsaka en barriär, jorden frilagd ovanför, annas inga synliga erosionsskador, inte ens på delytor som saknar beklädnad.

 slutsats: En mera noggrann besiktning av var vattnet bryter fram hade behövts och på dessa ställen borde lokal dränring nen i diket ha gjorts. Slänten i övrigt kunde troligen ha erosionsskyddats med t ex en erosionsmatta med gräs eller med mera snabbväxande buskar, tätare planterade. Skadan måste repareras. (Reparationer påbörjades en vecka efter besöket och denna gång byggdes från början en barriär i vägdiket ned mot Öjenäsbacken, jämför sid 17).

Slänt 2
Läge: vid riksväg 61, Arvika golfbana.

Lutning vinkel v=18°, 1:3

Längd L=10,5 m, Höjd H= 3,3 m

Beskrivning: Relativt hög slänt i sandig/siltig morän med avschaktat och tilljämnat krön, ingen krossbeklädnad, grässådd, fläckvis bortpolat, en mindre vattenhåla ovanför krön men inga skador nedanför, antydan till yterosionsskador där gräset inte fått fäste.

Figur 35. Slänt 2. Sådd med gräs.

Slänt 3
Läge: vid riksväg 61, 500 m V slänt 2.

Lutning varierande 1:3, 1:5

Längd L=8,2 m, Höjd H= 1,6 m
Beskrivning: Låg slänt i siltig morän med varierande lutning, delvis täckt av grov kross >300 mm, jorden ovanför vattenmättad, lutar mot slänten, vattensamlingar, rännlar av vatten, inga överdiken, slarvigt gjord täckning, eventuellt har krossbeklädnaden skadats vid uppsättning av viltstångslet, delar av krossbeklädnaden har rasat, påbörjad yterosion och rillor i partier som inte har täckts.

Slutsats: Slänt 3 bör göras om, med bortschaktning av lös jord, anläggning av överdike och/eller dränering vid vattenhålor. Behovet av krossbeklädnad kan bedömas efteråt, men samkross 0-200 eller 0-300 är inte befogat om vattnet tas om hand.
Slänt 4
Läge: vid riksväg 61, 200 m SV slänt 3.

Lutning vinkel v=16°, 1:3,4

Längd L=11,0 m, Höjd H= 3,1 m

Beskrivning: Slänt i vattenbemängd morän med flytjordsegskaper, vattensamlingar och rinnande vatten i lutande terräng ovanför krön, tydligt utlopp för vatten i slänten, rännil med hastigheten 0,5 m/s, erosionsskador, inga spår av finare beklädnadskorn men stora stenar där slänten rasat, mycket stora skador där beklädnad troligen saknats, krönet avschaktat och iordningställt fram till raset, sedan inte åtgärdat, vattnet har följt den planade ytan, inget dike.

Analys: Det är ett kraftigt vattenflöde som orsakat skadorna. Vid sidan om det studerade partiet finns täckta ytor, men det är svårt att se spår av täckning där haveriet skett. Ytskiktet har till att börja med eroderats bort och processen har troligen fortsatt med ett skred för att till sist rasera blocken och stenarna. Avschaktning av krönet har gjorts fram till raset men sedan avslutats. Spåret av vattenströmmen är tydligt och effekterna tyder på att det varit högt flöde. Bristerna i detta släntparti är att det saknas dike och dränning. Med tanke på allt vatten i
terrängen hade det varit lämpligt att dränera. Stora block i vägdiket är en potentiell fara vid trafikolyckor eftersom vajerräcke saknas just intill raset, beroende på en infart till åkermark.

Slänt 5

Läge: vid riksväg 61, aldeles intill slänt 4.

Lutning vinkel v=16°, 1:3,4

Längd L=12,0 m, Höjd H= 3,4 m

Beskrivning: Måttligt lutande slänt i vattenbemängd morän med flytjords-egenskaper, vattensamlingar och rinnande vatten i terrängen ovanför släntkrön, avschaktat och tilljämnat släntkrön med viltstängsel, inget erosionsskydd, inget överdike, yterosion med slamströmmar, skred och blottläggning av större moränstenar, utvecklade rillor i hela partiet tyder på ett ganska jämnt vattenflöde över slänten.

Slutsats: Om vattnet tas om hand så är troligen växter, gräs och/eller plantor, ett tillräckligt och passande erosionsskydd i den måttligt lutande slänten. Ett alternativ är täckning med samkross.

Slänt 6

Läge: vid riksväg 61, 300 m SV Edanekorset.

Lutning vinkel $v=16^\circ$, 1:3,5

Längd $L=21,0$ m, Höjd $H=5,6$ m

Beskrivning: Hög, torr slänt i sandig/siltig morän, naturslänt eller gammal slänt, ingen krossbeklädnad, enstaka kala fläckar med antydan till yterosion uppe vid krönet, annars vegetation, slänten röjd men med sparade högstubbbar av sälg/vide/björk med kraftig, låg och snårig grentillväxt, inget överdike men avschaktat och tilljämnat krön, inga vattensamlingar ovanför.

Analys: Det biologiska erosionsskyddet i form av lövsly med rikligt rotsystem är funktionellt. Slänten var överlag torr och terrängen ovanför krönet var i stort sett plan, så växtligheten kan sannolikt ta hand om regnvattnet. Vid krönet, intill viltstångslet bör skyddet kompletteras, med gräs eller plantor. Den uppluckrade torrskorpan vid krönet är känslig för regnpåslag.

Slänten är känslig för regnpåslag.

Figur 39. Slänt 6. Torr slänt med buskar.

Slänt 7

Läge: riksväg 61, 300 m NV Norsälven

Lutning vinkel $\nu=16^\circ$, 1:3,4

Längd $L=9$ m, Höjd $H=2,5$ m

Beskrivning: Torr slänt, avschaktat krön, terrängen ovanför lutar ifrån slänten, täckt med kross med 250 mm som största kornstorlek och tunt jordlager av siltig morän, planterad med gran, borodererat ytlager nedtill och rillor i ytjorden upptill, krosskornen under har inte transporterats.

Analys: Erosionsskyddet är kombinerat och består av samkross, jord och plantering av gran. Omfattande sprängningsarbeten har gjorts på andra sidan vägen och bergmassorna kan vara en förklaring till att slänten kostats på med kross före plantering. Rillorna i den kvarvarande ytjorden uppe vid krönet har inte uppstått på grund av flöde från terrängen ovanför utan är resultatet av regnpåslag med yterosion och/eller snösmältning i slänten. I krossbeklädnaden fanns inga tecken på erosion.

Slänt 8

Läge: länsväg 172, 1,3 km O Sulvik

Lutning vinkel v=16°, 1:3,4

Längd L=6,0 m, Höjd H= 1,7 m

Beskrivning: Torr, äldre slänt i sandig morän med etablerad växtlighet, plan mark ovanför krönet, slarvigt täckt med grov kross, stora, lösa block, ingen erosion för övrigt, gräs och tall, stora stenar även i vägdiket

Slutsats: Det finns inga erosionsproblem i slänten men de stora lösa blocken i slänten och i vägdiket bör rensas undan, eftersom de utgör en ökad risk vid avåkningar. Slänten kunde ha haft enbart biologiskt erosionsskydd.
Slänt 9

Läge: riksväg 61, 1,0 km SO Myrekorset

Lutning vinkel v=27°, 1:2

Längd L=4,0 m, Höjd H= 1,8 m

![Slänt 9](image)

Figur 42. Slänt 9. Brant slänt med rasrisk.

Beskrivning: Nyanlagd brant slänt, klädd med tjockt lager samkross med största kornen drygt 200 mm, rasrisk, avjämnat och täckt krön, högsta punkt på vägsträckan, plan mark ovanför, inga växter, sandig/siltig morän

Slänt 10

Lutning vinkel v=23°, 1:2,4

Längd L=6 m, Höjd H= 2,3 m

Figur 43. Slänt 10. Snösmältning, ytvattenflöde.

Figur 43 på förra sidan visar slänten i slutet av snösmältningsperioden 2014, då mätningar av ytvattnets strömningshastighet gjordes. Slänten är 20 m bred. Ytvattnet flödade under en veckas tid med ett djup på 0-3 cm, i tre skilda remor, med bredd 0,5 -1,0 m. I övriga partier strömmade också ytvatten, men utan att slänten där var helt täckt av vatten. Mätmetoden med tumstock och klocka var inte speciellt tillförlitlig och dessutom hakade sig de små korkbitarna ibland upp sig på något större korn. En längre mätsträcka hade varit bra, men den hade då krävt två observatörer, en i vardera änden. I takt med att flödet avtog ökade problemen med mätningen, men ett representativt värde för hastigheten blev till sist 1,0 m/s.

Terrängen ovanför slänten består av skogsmark. Marken lutar från en ås i 1 km ned mot slänten. Närmast slänten finns 50 m ungrskog, ca 15 år, följd av 100 m 40-årig granskog, ett 100 m hygge och sedan gammal granskog i brant lutning. Det finns flera små vattensamlingar och bäckar och marken är blockig. Där vattnet inte var synligt kunde flödet under snösmältningen ändå faktiskt höras bland blocken strax ovanför slänten. Sammantaget utsätts slänten för ett högt vattenflöde, både vid snösmältning och ihållande regn och den över svämmas ibland tidvis även sommartid.

Skador och förhållanden undersöktes i april 2014. Moränblock hade lossnat uppe vid krönet och börjat fraktas nedför slänten. Vatten hade trängt ned i ytlagret där täckningen saknas och ytan var mjuk på vissa ställen. Däremot hade inga genombrott skett. Gräset var ojämnt etablerat, men verkar tillsammans med krosslagret ändå ha bildat en "hud" som klarat av trycket från flytjorden. På ett ställe strax nedanför krönet, just där en vedhög ligger, fanns en bula som troligen orsakats av tryck från flytjord. I de partier där strömmen varit starkast har krosslagret tvättats ur så att bara de större kornen återstod, men det gick inte att upptäcka några ansamlingar av större korn nedströms. Små högar med mindre korn fanns däremot på
flera ställen och även några mindre gropar, som eventuellt kan ha varit djurspår, men också kan tyda på erosion av det lösa ytlagret under beklädnaden. Provtryckning med stöveln och en käpp gav också gropar. Krosskornen verkade dock inte ha flyttats. Å andra sidan är det troligen risk för skred på grund av jordflytning, eftersom det inte finns något överdike.

Den erforderliga kornstorleken för strömningshastigheten 1,0 m/s går att beräkna med de tidigare diskuterade formlerna och även att jämföra med mätningarna. Sambanden är sammanfattade i kurvorna i figur 29 på sid 38. De observerade förhållandena i slänt 10 tyder på att 35 mm korn väl klarar hastigheter på 1 m/s. Enligt den ”teoretiska” formeln, ekvation (1), och kurvan över mätresultaten i figur 29 skulle 20 mm korn på plant underlag klara av denna hastighet och tas divisor för släntlutningen med i beräkningen så skulle korn med storlek 25 mm också klara sig. Divisor för släntlutning blir för 1:2,4, enligt diagrammet i figur 25, ca 0,83. Maximala kornstorleken med Trafikverkets metod blir på motsvarande sätt drygt 60 mm.

Dike

Lutning vinkel \(v = 7,5^\circ \), 1:7,5

Längd \(L = \text{ca 100 m} \)

Beskrivning och analys: Både litteraturstudierna och resultaten för slänt nr 10 gav upphov till misstanken att erosionsskydd i form av kross kan göras med mindre kornstorlek än brukligt. Därför studerades också ett dike, intill småhustomtens tillfartsväg, trots att det inte är en slänt i vanlig mening. Diket är grävt i siltig morän och leder vatten från terrängen och från slänt 10 ned mot en vägtrumma under väg 638. Diket är rakt och med en jämn lutning av ca 7,5\(^\circ\). Första året var inte dikets botten eller sidor erosionsskyddade och då skars botten upp och även den södra sidan av vägbanken på tillfartsvägen. På våren 2013 var vägen hotad och därför åtgärdades dike. Det består för närvarande av tre urskiljbara delar. De översta 15 m är täckta av 32 mm makadam, alltså sten utan nollfraktioner, som var överblivna rester från husbygget. Därefter följer 75 m som täckts av samkross 0-150 mm (enligt beställning och faktura) och sista delen är oskyddad. Största kornen mättes dock till ca 300 mm. Figur 45

Figur 45. Dike. Det nedre högra fotot visar delen med makadambeklädnad.
visar diket i den senare delen av snösmältningsepoken våren 2014. Dikesbotten var vatten-
täckt under ca 2 veckor. Största vattendjup var 1 dm och den högsta vattenhastigheten var 2,0 m/s, med 2-3 dygs varaktighet. Mätmetoden var densamma som för slänten, dvs. att korkbitar släpptes i strömmen och tiden för 2 m passage mättes.

Vid den senare besiktningen i början av april var diket torrt på ytan, men vatten strömmade fortfarande mellan de grövre stenarna i botten. I den nedersta, oskyddade delen hade erosionen fortsatt och slam hade fraktats ned till väg 638-diket. Det fanns inga erosionsskador i den mittre delen, med täckning av grov kross. I delar med grövre korn hade krossen bildat effektiva förband. Det gick naturligtvis inte att avgöra om enskilda korn hade transporterats, men på två ställen fanns ändå ansamlingar av korn med typisk storlek 50-75 mm. Hastigheten 2 m/s motsvarar i och för sig en kornstorlek av ca 80 mm, men osäkerheten är alltför stor för att dra någon slutsats av detta. Slumpen kunde lika gärna ha gjort att kornen hamnat i högar vid utläggningen.

Figur 46. Förband i dikesbotten.

Figur 47. Makadamkorn som samlats nedströms. Torr respektive vattentäckt dikesbotten.

Dikets översta del lämpade sig bra för att undersöka hur korn transporterats av vattenströmmen. Botten var avjämnad och slät innan makadamlagret lades på och kornen hade jämn storlek, ca 30 mm. Enstaka moränblock och enstaka krosskorn som lossnat från vägbanen fanns också i underlaget. På den 15 m långa sträckan fanns tre mycket tydliga ansamlingar av 30 mm-korn, se figur 47 ovan. Det vänstra fotot togs efter en tids torrt väder och det högra efter två dagars måttligt regn. Uppströms kornhögarna var botten renspolad på halvmeterlånga

Slutsats: 30 mm-korn eroderas av vattenström med hastigheten 2 m/s, men stora korn >100 mm klarar hastigheten 2 m/s. Teorin och mätningarna enligt figur 29 visar att gränsen för att korn skall kunna transporterats med hastigheten 2 m/s ligger vid ca 80 mm korn. Detta motsägs inte av observationerna i diket.

Slänter – sammanfattning

För att lättare kunna överblicka resultaten av fältstudierna har observationerna samlats i tabellen nedan och på nästa sida lämnas ytterligare några kommentarer.

Tabell 5. Sammanfattning av observationerna vid slänterna.

<table>
<thead>
<tr>
<th>Slåntnr</th>
<th>Höjd, m</th>
<th>Lutning grad</th>
<th>Lutning ovan</th>
<th>Vatten ovan</th>
<th>Överdike</th>
<th>Kron</th>
<th>Skydd</th>
<th>Skador</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,5</td>
<td>18</td>
<td>Mot</td>
<td>Ja</td>
<td>Nej</td>
<td>Nej</td>
<td>Kross 250</td>
<td>Jordflytning, skred</td>
</tr>
<tr>
<td>2</td>
<td>3,3</td>
<td>18</td>
<td>Plan</td>
<td>Nej</td>
<td>Nej</td>
<td>Ja</td>
<td>Gras</td>
<td>Små</td>
</tr>
<tr>
<td>3</td>
<td>1,6</td>
<td>var</td>
<td>Mot</td>
<td>Ja</td>
<td>Nej</td>
<td>Nej</td>
<td>Delvis kross</td>
<td>Skred o ras</td>
</tr>
<tr>
<td>4</td>
<td>3,1</td>
<td>16</td>
<td>Mot</td>
<td>Ja</td>
<td>Nej</td>
<td>Ja</td>
<td>Inget el delvis</td>
<td>Erosion, skred o ras</td>
</tr>
<tr>
<td>5</td>
<td>3,4</td>
<td>16</td>
<td>Mot</td>
<td>Ja</td>
<td>Nej</td>
<td>Ja</td>
<td>Inget</td>
<td>Erosion</td>
</tr>
<tr>
<td>6</td>
<td>5,5</td>
<td>16</td>
<td>Plan</td>
<td>Nej</td>
<td>Nej</td>
<td>Ja</td>
<td>Löv</td>
<td>Nej</td>
</tr>
<tr>
<td>7</td>
<td>2,5</td>
<td>16</td>
<td>Från</td>
<td>Nej</td>
<td>Nej</td>
<td>Ja</td>
<td>Kross 250 gran</td>
<td>Små</td>
</tr>
<tr>
<td>8</td>
<td>1,7</td>
<td>16</td>
<td>Plan</td>
<td>Nej</td>
<td>Nej</td>
<td>Nej</td>
<td>Grovkross gräs, tall</td>
<td>Nej</td>
</tr>
<tr>
<td>9</td>
<td>1,8</td>
<td>27</td>
<td>Plan</td>
<td>Nej</td>
<td>Nej</td>
<td>Ja</td>
<td>Kross >200</td>
<td>Rasrisk</td>
</tr>
<tr>
<td>10</td>
<td>2,3</td>
<td>23</td>
<td>Mot</td>
<td>Ja</td>
<td>1 m/s</td>
<td>Nej</td>
<td>Kross 0-35 gräs</td>
<td>Små, risk f jordflytning</td>
</tr>
</tbody>
</table>

Med *Lutning ovan* menas om terrängen ovanför lutade mot eller från slänten, eller var plan.

Vatten ovan avser om terrängen ovanför krönet var vattenbemängd.

Om krönet var avschaktat och tilljämnat anges i kolumnen *Kron*.

Skydd avser typen av erosionskydd.
Kommentarer till tabellen:

- Den gynnsamma kombinationen visade sig, inte överraskande, vara då terrängen var vattenbemängd och lutade mot slänten, samtidigt som överdiken saknades. Det är anmärkningsvärt att överdiken saknades för alla slänten. Enligt Trafikverket skall de finnas då terrängen lutar mot slänten.
- En gynnsam kombination, heller inte överraskande, var då terrängen ovanför slänten var plan eller lutade från slänten, samtidigt som den inte var vattensjuk.
- Vägslänterna var med ett undantag skurna i rekommenderad lutning. Lutningen skall enligt Trafikverket påverka kornstorleken (lutningsdivisorn), men beklädnadens grovlek väljs troligen efter standarddimensioner, 0-150, 0-200, 0-300.
- Täckning med grov kross har inte hjälpt i de skadade slänterna, eftersom vattnet inte tagits om hand. Ganska stora släntytor var krossbeklädda och oskadade, utan tecken på erosion. Skreden var lokala och begränsade till remor på ett par meters bredd.
- Det har antagligen inte funnits någon som helst koppling mellan Trafikverkets dimensionerande ekvation för kornstorleken och de verkliga slänterna, bl. a beroende på att vattenflödena verkar ha förbisetts helt och hållet.
- Krönen var i flera fall iordningställda och försedda med viltstängsel, men diken eller dränering har inte gjorts. Om inte förr, så borde vattenflöden ha uppmärksammat och åtgärdats i samband med arbetena med krönen.
- Slänterna med växter som erosionsskydd var oskadade, men de var heller inte utsatta för vattenflöden från terrängen ovanför. Biologiska skydd är tillräckliga som erosionsskydd för det vatten som kommer från regn och snö som faller i slänten.
- Det gick inte att avgöra om höjden är relevant för bedömning av risken för skador på grund av erosion och skred orsakade av jordflytning. Enligt Trafikverket skall dock beklädnadens tjocklek bland annat baseras på släntens höjd.
- Det hade behövts uppgifter om många flera slänter och möjlighet att besikta dem under längre tid och vid tillfällen med stora ytvattenflöden.
4. Diskussion

Bland de täckande erosionsskydd har bara två typer, nämligen täckning med kross och biologiska skydd med vegetation, funnits tillgängliga för fältstudiedelen av det här arbetet. Preventiva skydd, för att minska vattenflödet, har egentligen inte funnits, men avseknaden av sådana skydd har tydliggiort att de är berättigade.

Idén till examensarbetet kommer från en undran om det verkligen är befogat att fylla vägslänterna med enorma mängder grov bergkross och om det inte vore möjligt att låta vägslänterna växa sig gröna istället.

De täckande skydden med bergkross är mycket vanliga och de görs oftast med stora och grova korn. Speciellt litteraturstudierna och i någon mån fältstudierna antyder att det inte är nödvändigt att använda så grovkornig täckning. Trafikverkets dimensioneringsregler har ifrågasatts och de, i och för sig alltför få och enkla, praktiska mätningarna motsäger inte detta.

En räkneövning kan vara intressant. För varje mil nyanlagd väg kanske 20 % kan anses behöva kross som erosionsskydd, med de bedömningsåtgärder som brukar användas. Vägen kan ha skärningsslänter på båda sidor, så det borde inte vara en överdriven uppskattning. Densiteten för kross är ca 1,7 ton/m³ och en "vanlig" lastbil tar ca 13 ton. Därför går det åt ca 13 600 ton kross för att täcka en 2 km bred slänt med typisk längd 10 m och ett skikt på 4 dm och det motsvarar ca 1050 stycken lastbilsslass. Om krossbeklädnad reserverades för de speciella ställen där vattnet letar sig nedför slänten kanske bara 10 % av sträckan skulle behöva täckas, dvs. 200 m, och om skiktjuckleken dessutom minskades med 1 dm så skulle åtgången istället bli drygt 1000 ton, eller knappt 80 lass. 970 lass färre med en lastbil som kanske kör en ruttn på 5 mil fram och åter, med en förbrukning på 4 l/mil, innebär en dieselbesparing på närmare 20 000 liter per mil väg. Typiska värden kommer från Västvärmlands LBC. Till detta kommer minskad dieselförbrukning i krossverk, gräv- och lastmaskiner. En grov uppskattning ger en total dieselbesparing upp emot 25 000 liter per mil nyanlagd väg. Sparad arbetstid för transport och utläggning samt betydligt minskade miljö- och trafikstörningar är också viktiga i sammanhanget. Om biologiska skydd skulle väljas istället tillkommer dock förstås transport av och arbete med plantor, gräsfrö och eventuella mattor samt senare underhåll.

Prov med tunna skikt av finare kross borde vara intressanta att utvärdera. Den minsta rekommenderade tjockleken på 500 mm för erosionsskydd i vatten är orimlig för vägslänter. Däremot förefaller Trafikverkets skiktjocklekar enligt figur 26 att vara rimligare, åtminstone för måttliga slänthöjder. Lämpligheten hos dimensioneringsformeln har i allt fall diskuteras i några av källorna. Inget sägs heller i regelverket om vattenflödets varaktighet. För slänter som bara tillfälligt utsätts för stora flöden bör varaktigheten spela in. Prov med förslagsvis 100 mm tjockt skikt av kross 0-35 mm och strömningshastighet 1 m/s respektive 200 mm 0-90 mm och 2 m/s vore intressanta att göra.

Fältstudierna visar att torra slänter klarar sig bra med växter som erosionsskydd och de krossbeklädda slänterna visar heller inga erosionsskador, så länge som vattenflödena är normala. Det riktigt stora problemet visade sig vara att inte ens grov samkross klarar lokala flöden från bäckar och diken, där hastigheten sannolikt blir mycket hög. Flera av slänterna som var täckta med grov kross i bredder på hundratals meter, hade mycket stora lokala skador. Tydligen hade ingen lyckosam inventering av förhållandena i terrängen gjorts, eller så var arbetena dåligt utförda. Att studera höjdkurvor och hydrologiska data och framförallt undersöka terrängen skulle ha varit både bättre och billigare än att täcka stora arealer med kross där det inte behövs. Speciellt tydligt blir det när jordflytning och skred inträffat i meterbreda remsor, medan slänten i övrigt är helt opåverkad av erosion. Där de riktigt stora flödena och hastigheterna uppträder kan slänterna dräneras och förses med speciella skydd. Den preventiva åtgärden att göra överdiken är också tilltalande och Trafikverket föreskriver sådana. Vid de studerade slänterna fanns dock inga överdiken och om terrängen fortsätter att luta som slänten kan det vara besvärligt att leda ut vattnet genom ett dike. Kritiska ställen bör gå att upptäcka när vägen stakas ut och även i samband med anläggningsarbetena, men före täckningen. Det sammanfattande intrycket blev att flera av erosionsskydden var slarvigt gjorda och inte i enlighet med reglerna och dessutom att beklädnad med kross hade gjorts slentrianmässigt och okritiskt. Mest anmärkningsvärt var kanske ändå att avrinnningen av vatten från den ovanförliggande terrängen inte verkade ha undersöks. Åtminstone hade inga åtgärder för att säkert leda flödet förbi slänten eller direkt till vägdiket vidtagits.

Rundturen till vägslänterna gjordes i senaste laget, eftersom snösmältningen var avklarad och därmed hade vattnet i stort sett slutat att strömma. Det var dock inte svårt att se var strömmen hade gått och lindriga erosionsskador upptäcktes i några slänter. För de ställen där slänten hade rasat helt och håll var det omöjligt att avgöra hur haveriet hade börjat. Det kan ha
börjat med yterosion och sedan vatteninträngning i det lösa ytlagret, följd av jordflytning och skred, men huvudorsaken kan också ha varit direkt infiltration i det lösa ytlagret. Tyvärr är det inte realistiskt att schakta bort hela det lösa ytlagret innan erosionsskyddet skapas, men den vattenbemängda och flytande torrskorpan av siltig morän kan lokalt ta med sig både erosionsskydd och delar av slänten i skred.

5. Slutsatser

Krossbeklädda vägslånter och slänter med etablerad växtlighet eroderas inte av normala yt-
vattenflöden. En förutsättning är att avrinning med stora flöden tas om hand, genom dikning
eller dränning i särskilt kritiska punkter. Krossbeklädnad hjälper inte där flöde och hastighet
är mycket stora och där kan slamströmmar, jordflytning och skred inträffa. Höjdkurvor och
lokalfältkartläggning av avrinning är mycket viktiga hjälpmedel. Studierna tyder på att det
går att använda mindre korn och tunnare skikt än vad de vedertagna dimensionerings-
metoderna föreskriver. Biologiska skydd i form av gräs och buskar fungerar bra och växterna
utgör erosionsskydd samtidigt som de tar upp vatten. Kombinationen av växter och tunnare
krosskikt med mindre korn är en tilltalande och resursbesparande framtida metod. Om
bergkross dessutom bara används där den verkligen behövs så blir besparingen ännu större,
både ur hållbarhetsperspektiv och rent kostnadsmässigt. Fältstudierna visar brister i det
utförda arbetet, okritisk användning av kross samt att vattnets vägar i terrängen mot slänerna
inte har undersömts ordentligt.

Bedömningsunderlaget och slutsatserna lider dock av arbetets begränsningar. Flera slänter,
med olika erosionsskydd, studerade vid tidpunkter med stora flöden och även under längre
tidsperioder skulle behövas för att förbättra bedömningarna.
6. Tackord

Referenslista

https://www.msb.se/RibData/Filer/pdf/23412.pdf [2014-02-26].

https://www.msb.se/Upload/Forebyggande/Naturolyckor_klimat/F%C3%B6rebyggande%20%C3%A5tg%C3%A4rder%20mot%20skred,%20ras%20och%20erosion.pdf?epslanguage=sv [2014-02-25].

Myndigheten för samhällsskydd och beredskap [MSB] (2011). *Översiktlig stabilitetskartering i morän och grova jordar, Exempel på resultatkarta*. [Elektronisk]. Tillgänglig:

Tecomatic (2014). *Foreshore Protection. Datablad.* [Elektronisk]. Tillgänglig:

http://www.trafikverket.se/PageFiles/29996/kapitel_c_dimensionering.pdf [2014-02-26].

http://www.trafikverket.se/PageFiles/29996/kapitel_d_avvattning_och_dranering.pdf) [2014-02-26].

Trafikverket (2010). *Metoder för bättre bedömning av stabilitet i slänter med finkornig jord.* [Elektronisk]. Tillgänglig:
http://www.vegvesen.no/_attachment/154912/binary/265311?fast_title=Stabilitet+finkornig+j ord+(pdf+7,+8+MB) [2014-03-12].

http://publikationswebbutik.vv.se/upload/6643/2011_140_Vaxtlighet_i_vagmiljo_praktiska_r ad.pdf [2014-03-03].

Bilagor

Bilaga A: Släntprotokoll
Protokoll använt vid fältstudier av slänerna

Släntprotokoll

Nummer: _______________ Datum: ____________________

Läge: __

Beskrivning:

Växter: __
Kross: ___
Tjocklek: __

<table>
<thead>
<tr>
<th>Känet</th>
<th>Hypotenusa</th>
<th>Vinkel</th>
<th>Höjd</th>
</tr>
</thead>
</table>

Vatten: [] []

Övrigt: __