Systematisk processutveckling

Eliminering av pluggar i Fluffer

Systematic process development

Kim Bengtsson

Examensarbete vid maskiningenjörsprogrammet
Juni 2013
Sammanfattning

I samarbete med BillerudKorsnäs AB Gruvöns bruk, har ett projekt genomförts för att optimera produktionen i deras flingtork. Denna avdelning innehåller två separata produktionslinjer vilket torkar, pressar och paketerar avsalumassa. Innan detta projekt startades uppstod kontinuerliga produktionsstörningar, vilket ledde till onödana materialkostnader, arbetsinsatser och utebliven produktion. Vad projektet baserats på var att kunna öka tillförlitligheten för avdelningen genom att identifiera och eliminera grundproblemet, eller grundproblemen.

Utifrån detta projekt har pluggar reducerats med åtminstone 66 procent, och medfört en tidsbesparing av arbete med över 50 timmar under ett år. Den nettointäkt som gått förlorad årligen har varit en ungefär summa på 800 000 kronor.

Framtida investeringar kommer ske på Gruvöns bruk vilket medför att högre tillförlitlighet krävs av deras produktionslinjer. Maskiner och anläggningar måste ständigt optimeras om företaget fortsatt ska vara världsledande inom nyfiberbaserat förpackningsmaterial. En påbyggnad av detta projekt för ytterligare processoptimering vore att utveckla en körmanual för säker drift. Även att införa reglerbar ångtillförsel i processen så att besparingar kan göras för både kostnader och energi.
Abstract

In cooperation with BillerudKorsnäs AB Gruvöns mill, a project has been conducted with the intent to optimize the production within their pulp flash dryer. This department contains two separate production lines which dry off, press and pack paper pulp. Before this project was started there had been a problem with continuous disruption of production, which in its turn led to unnecessary costs for materials, labor and hold ups in the production line. The goal with this project was to increase the reliability of the department by identifying and eliminate the cause for this problem or problems.

The cause for this disruption of the production was that a return line from a "fluffer" kept on getting packed up by the pulp and thereby causing a hold up in the flow. Every hold up that was caused by this resulted in up to an hour’s loss of production time, and an additional hour of labor to correct the problem. Through a systematic development process the basic cause for this problem was identified. It turned out to be a defective control value in a dewatering press and with an optimization of the operation control of the press, a drastic reduction of plugs could be observed.

The project’s course of action was divided into three main approaches, a pilot study, basic troubleshooting and measures to fix the problem. The main intention of the pilot study was to find and create a strong basis for the projects course of action and methods that were to be used. It also helped in the selection of the different troubleshooting methods that were used. For example logging of temperatures, measurements of dryness and airflow. After compiling and analyzing the different tests, a meeting was held to get an opportunity to brainstorm and thereafter a follow up meeting were the decision of a course of action was made. These elements were a part of the third main part of the project were a follow up of the project also was conducted. With this, the improvements and solutions of the problem could ensure a more stable process.

As a result of this project, the forming of plugs have been reduced with at least 66% and with that a reduction of labor with over 50 hours a year. The net revenue that has been loosed every year because of this problem, has been about 800 000 kr.

Future investments will be made at Gruvöns factory which will increase the demand of reliability in their different departments and production lines. Machines and facilities constantly need to be optimized if the company is to continue to be dominant within the fresh fiber based packaging material market. A continuation of this process to further improve the production would be to develop a manual for secure operation, and also to establish an adjustable method to provide steam which would reduce costs and save energy.
Innehållsförteckning

Sammanfattning
Abstract

Innehållsförteckning
1. Inledning .. 6
2. Genomförande .. 7
 2.1 Flingtorkens delar och funktion .. 7
 2.2 Systematisk processutveckling .. 8
 2.3 Förstudie .. 8
 2.4 Felsökningsmetoder .. 9
 2.4.1 Loggning temperaturer .. 9
 2.4.2 Torrhaltsmätningar ... 10
 2.4.3 Luftflödesmätningar ... 11
 2.4.4 Inspektionsglas .. 11
 2.4.5 Malspaltshöjd .. 12
 2.5 Utvärdering och uppföljning .. 12
 2.6 Avvattningspress .. 13
3. Resultat .. 14
 3.1 Förstudie .. 14
 3.2 Felsökningsmetoder .. 14
 3.2.1 Loggning temperaturer .. 15
 3.2.2 Torrhaltsmätningar ... 16
 3.2.3 Luftflödesmätningar ... 16
 3.2.4 Inspektionsglas .. 17
 3.2.5 Malspaltshöjd .. 18
 3.3 Brainstormingmöte ... 19
 3.3.1 Torrhaltsmätningar massabana ... 19
 3.3.2 Kontrollmätning av pressnyp .. 19
 3.3.3 Koncentrationsmätningar ... 20
 3.3.4 Styrning avvattningspress .. 20
 3.4 Uppföljningsmöte ... 21
 3.5 Uppföljning och ekonomisk utveckling ... 21
4. Diskussion .. 22
 4.1 Utvärdering av data ... 22
 4.1.1 Förstudie .. 22
 4.1.2 Felsökningsmetoder ... 22
4.1.3 Åtgärder och uppföljning ... 23
4.2 Problem i samband med arbete ... 24
5. Slutsatser .. 25
 5.1 Utveckling av projekt ... 25
Tackord ... 26
Referenslista ... 27
Bilaga 1: Flödesschema för flingtork Gruvöns bruk B1.1
Bilaga 2: Planering av projekt .. B2
Bilaga 3: Summering av förslag och åtgärder från projekt 2012 B3
Bilaga 4: Matriser för felsökningsalternativ .. B4.1
Bilaga 5: Temperaturloggar för fluffer L1 & L2 B5.1
1. Inledning

Arbete med förebyggande och avhjälpande underhåll är något som ständigt pågår inom industrin för att optimera produktion och tillverkning. BillerudKorsnäs AB är en världssläktande leverantör av nyfiberbaserat förpackningsmaterial och använder sig av detta arbetssätt för att alla deras åtta produktionsanläggningar ska fungera så optimalt som möjligt. Gruvön som är en av koncernens största bruk ligger beläget i Grums och håller ständigt på med förbättringsarbete för både drift och underhåll.

Inom ramarna för denna kurs har jag i samarbete med Gruvöns bruk, genomfört ett projekt vars målsättning är att genom systematiska arbetsmetoder lösa en återkommande produktionsstörning. Genom konkreta och tydliga metoder ska felsökningar utföras för att omringa och urskilja den eller de huvudsakliga grundorsakerna. Syftet med detta projekt är att få tillämpa kunskaper från min maskiningenjörsutbildning i en systematisk processutveckling, samt att erhålla erfarenheter av problemlösning inom industrin.

Problemet som behandlas i detta arbete uppstår i en produktionslinje i brukets flingtork som är en av Gruvöns avdelningar och producerar avsalumassa. Denna produktion hindras återkommande då pluggningar i en fluffer och dess returledning uppstår och medför produktionsstopp. I figuren nedan kan man se den aktuella fluffern för linje 1 och dess returledning.

Figur 1: Fluffer samt returledning.

Det aktuella målet för detta projekt är att genom systematiska metoder ta reda på orsaken för grundproblemet i processen, alltså att identifiera den eller de bidragande orsakerna till att pluggar uppstår. När orsaken, eller orsakerna har identifierats ska en ekonomiskt hållbar åtgärd rekommenderas och om tid samt resurser finns att tillgå (godkännande måste fås av Gruvön), ska även åtgärden utföras och följas upp.
2. Genomförande

2.1 Flingtorkens delar och funktion

![Figur 2: Skissad delöversiktsbild på flingtork, (arkiv Gruvön BillerudKorsnäs AB).](image)

Tydligare och mer noggrann översikt på flingtorken hittas i bilaga 1, för maskiner, ledningar, övrig utrustning och dess kombination för processen i ett flödesschema.
2.2 Systematisk processutveckling

För att kunna identifiera det eller de aktuella felet angående pluggningar i fluffern, behövs en systematisk metod följas i samband med en strukturerad tidsplanering och de resurser som finns att tillgå på Gruvön. Tidsplan och upplägg av arbetsmoment för projektet hittas i bilaga 2.

Projektet är uppdelat i tre huvuddelar, då den första är en grundlig förstudie där granskning av rapporterat material ur företagets interna datorsystem IFS ska göras för arbetsordrar, ritningar, flödesscheman samt tidigare utförda projekt för den aktuella processen. Instruktioner och liknande material ska även granskas och kontrolleras för jämförelse med dagens processstyrning och flöde. Intervjuer med inblandade personer som representerar olika områden för avdelning ska ske, för att få ett beroende kategoriers uppfattning av problemet. Samt viktigast av allt, att vara ute i produktionen för att själv uppleva och kontrollera processen och dess flöde.

2.3 Förstudie

För att börja i rätt ände i en systematisk processutveckling är det viktigt att ha en stark beslutsgrund att utgå ifrån. Det är mycket viktigt att få kunskap om den aktuella processen och dess flöde så att sakkunskap är baserad på fakta. Den enda dokumenten som erhålls av denna maskin från leverantören är en instruktionsmanual och ett flertal sammanställningsritningar.

Det som är unikt för detta projekt är att mycket få riktlinjer och driftvärden finns att följa utifrån dokumentation. Detta medför att eventuella felsökningar som sker kommer jämföras mellan avdelningens båda linjer, då problemet med pluggar i betydligt övervägande utsträckning erbjuder uppräkning för linje 1. Detta görs för att ledas i rätt riktning av att eliminera pluggningarna bör jag kunna utesluta linjernas likheter och istället fokusera på dess olikheter för eventuell optimering.

Flödesschemat över flingtorken har granskats tillsammans med dagens processstyrning för att se om eventuella förändringar har skett och inte blivit uppdaterade.
Arbetsordrar som gjorts i anläggningen med fokus på flufffrarna har granskats och jämförts mellan linjerna, för att klargöra om eventuella modifieringar har skett och även hur omfattande problemet är.

År 2012 har omfattande försök gjorts för att ta reda på varför pluggarna ständigt uppstår. En mängd felsökningar och åtgärder utfördes under detta projekt och dokumenterades (Olsson 2012a, b, c), men den grundläggande orsaken upptäcktes aldrig. Detta material har granskats och tagits till hjälp för att kunna utesluta att samma felsökningar sker igen, så att nya kan utföras för att uppnå ytterligare bredd. I bilaga 3 kan man se en sammanställning på de förslag och felsökningar som utfördes under detta projekt.

Omfattande rapporter över anläggningen är gjorda då en mängd olika kontroller har skett under planerade produktionsstopp. Dessa är gjorda för att eventuellt optimera anläggningen, men framförallt kontrollera att utrustningen fungerar som den ska.

2.4 Felsökningsmetoder

Innan åtgärder för eliminering av pluggar kan ske behövs avgränsningar göras i största möjliga utsträckning för att kunna gå systematiskt tillväga och även säkra den tidsåtgång som har specificerats. Efter att den grundliga förstudien utförts som tidigare nämnts, har förslag på användbara metoder och felsökningar tagits fram. För att dessa ska kunna utföras inom tidsramarna och att de mest relevanta metoder ska användas, har det genom beslutsmatriser (Johannesson et al. 2004), sällats fram olika förslag. I bilaga 4 kan man se de aktuella matriserna och felsökningsförslag som användes i denna sållning.

2.4.1 Loggning temperaturer

Genom tidigare nämnda beslutsmatriser över felsökningsmetoder som gjorts, visade det sig att temperaturmätningar för fluffernas massa var mycket relevant i detta sammanhang. För att kunna jämföra temperaturförändringar över tid i förhållande till produktion användes ett loggningssystem. Med hjälp av en signalomvandlare som i detta fall temperaturgivare anslutits till, lagras signalvärden på en hårddisk där man sedan kan överför information till ett dataprogram. Loggningsprogrammet som användes heter Easy-View och med hjälp av detta kan närmare analyser göras av uppsamlad data och samförs med trendade kurvor från den aktuella produktionen för linjen. I figur 3 nedan ser man var temperaturgivarna placeras under dessa mätningar.

Figur 3: Temperaturgivare placerade på fluffer.

Då massan bearbetats i fluffern slungas den ut i en luftkanal för att vidare transporteras och torkas. Även på denna ledning loggades temperaturerna för att kunna jämföra de båda linjerna.

2.4.2 Torrhaltsmätningar

Fluffningen av massan är ett mellansteg i en torkningsprocess, se delbild av flödesschema i figur 4. Pilarna visar massans riktning då de från vänster sett kommer från en avvattningspress, för att efter fluffern ledas ut mot torkcykloner, se pilen till höger.

![Figur 4: Delprocess från flödesschema, (arkiv Gruvön BillerudKorsnäs AB).](image)

Eftersom båda linjerna i flingtorken är utformade med identiska maskiner, ledningar och flöden så långt det är möjligt, krävs det att även att massan är i samma tillstånd för att flufferns förutsättningar ska vara lika. Då pluggar sker med ett betydligt högre intervall för linje 1 är det av stor vikt att kunna jämföra torrhalten på massan. Flertal prover gjordes på torrhalterna mellan linjerna för att kunna jämföras.

Vid torrhaltsmätningar samlas cirka 100 gram massa upp ur de inspektionsluckor som finns monterade på vardera fluffers returledning och läggs i tätslutande burkar. Massan vägs i det tillstånd som råder då proverna tas och jämförs efter att massan har erhållit en torrhalt så nära 100 procent som möjligt. Metoden rekommenderades av Rådman 1, för att tillräckligt tillförlitliga resultat skulle utvinnas.

1 Jenny Rådman utvecklingsingenjör lab BillerudKorsnäs, intervju den 11 mars 2013.
Detta görs genom arkmetoden då man blandar ut och finfördelar den uppsamlade massan i en slurry (en variant av mixer), som bidrar till lättare och jämnare fördelning av blandningen som underlättar torkningen och minskar den tid som annars skulle behövas. Den utspädda massan hålls i en arkform där man tappar blandningen på vätska genom en metallvira. Den arkformade massan pressas, torkas i ett varmluftsskäp och läggs i en exsickator för att uppnå högsta möjliga torrhalt, innan man till slut väger den torra massan som jämförs med vikten då den var fuktig.

2.4.3 Luftflödesmätningar

Luftflödesmätningar utfördes på vardera linje i flingtorken. Mätningar utfördes i fluffarnas utloppsledningar samt i våttransportskanalerna, för att konstatera om lika mycket varmluft tillförs.

Det fanns sedan tidigare inga rekommenderade riktvärden för dessa luftflöden, utan tanken med dessa mätningar var att ta reda på om det råder skillnader mellan linjerna. Luftflödesmätningarna utfördes av professionell personal från företaget YIT och de använde sig av prandtlrör som mätinstrument.

2.4.4 Inspektionsglas

Ett inspektionsglas beslutades att monteras in på flufferns returledning för att kunna övervaka massaflödet. Genom detta glas ska man kunna ha koll på massauppbryggnad, hur den bygger, var den bygger och när den börjar bygga efter ledningens väggar. I figur 5 ser man returledningen från fluffern där inspektionsglaset är tänkt att monteras.

![Figur 5: Returledning för fluffer.](image)

Tanken var att få en tydligare uppfattning om hur massan beter sig inuti ledningen och att kunna dra slutsatser efter vad man ser vid observation. Lämplig placering på glaset gjordes efter konsultation med Söderqvist ².

2.4.5 Malspaltshöjd

Beroende på vilken sort och mängd massa som ska fluffas, ställs spalten för flufferns malskivor till ett lämpligt avstånd. Belastningen på flufferns motor bör ligga mellan 250 till 300 ampere för att inte utrustningen ska överbelastas (Sunds AB 1971). Spalten får heller inte vara för stor då det kan uppstå så kallade Fish-Eye´s, vilket är små rullade massabollar och är en kvalitetsbrist enligt Israelsson 3.

Kontroll av malspaltshöjd för båda linjerna gjordes för att säkerställa att identiska förhållanden råder mellan linjerna då fluffning sker av massan. I figur 6 nedan kan man se spalten mellan malskivorna för fluffern på linje ett.

![Spalt mellan malskivor för fluffer.](image)

Figur 6: Spalt mellan malskivor för fluffer.

2.5 Utvärdering och uppföljning

Möten hölls i samråd med alla inblandade kategorier på flingtorken för att lösa problemet med de ständiga pluggningarna som uppstår och är produktionshindrande. Efter att de grundläggande felsökningarna utförts som nämnts i steg två, hölls ett brainstormingmöte där de presenterades för att eventuellt ta beslut om åtgärder, eller om fler felsökningar skulle behöva göras för att grunda detta på tillräckligt starka bevis. Beslutet om att göra ytterligare felsökningar och lägga fokus på torrhalten för linje 1 togs i samråd med alla parter.

Efter utförande av de beslut som togs på brainstormingmötet hölls ett uppföljningsmöte. Detta gjordes för att följa upp, konstatera och säkerställa att rätt information hade framtagits efter att felsökningar gjorts.

Efter att åtgärder och optimeringar utförts har uppföljning skett, i form av kontroll över tillförlitligheten för processen. Denna jämfördes med historiskt dokumenterat material för tillförlitligheten innan åtgärder och optimeringar utfördes. Utifrån detta togs det fram en ekonomisk utveckling för processen i form av tid, resurser och utebliven produktion.

3 Kristin Israelsson chef processupport BillerudKorsnäs, intervju den 20 mars 2013.
2.6 Avvattningspress

Avstånd för pressnyp kontrollerades mellan valsarna och detta gjordes för både linje ett och två. Riktvärden har angivits i instruktionsmanual (Sunds AB 1971), vilket är mellan sex till fjorton millimeter. Spelet mellan valsarna är dock anpassade väldigt individuellt beroende på vilken sorts massa som produceras, så av intresse i detta fall var att jämföra om pressnypet var inom felmarginalen för linje 1 och 2.

Koncentrationsmätningar gjordes för den massablandningen som pumpas in i avvattningspressen från de lagringskar (LC-kar), som används i flingtorken. Eftersom det över lag är gammal utrustning var det av stort intresse att kolla om visarutrustningen för driftpersonalen överensstämmde med verkliga värden.

Beslut om att kontrollera avvattningspressens styrmotor togs i samråd på möte. Många parametrar misstänktes fela enligt diskussion, då de kan ha ändrats utan dokumentation, eller om ny utrustning har monterats och ej optimerats till dess syfte.

3. Resultat

3.1 Förstudie

Vid renodlad analys av arbetsordrar ur IFS för flufffrarna kan man konstatera att det har från den 1:a januari 2011 tills den 11:e mars 2013 rapporterats att pluggar uppkommit vid 80 olika tillfällen för linje 1, jämfört med två rapporterade tillfällen för linje 2. Enligt diskussioner med driftpersonal kan antalet pluggar dubblas, då brist på rapportering av detta sker både av tidsbrist och slarv.

Vid granskning av arbetsordrar längre bakåt i tiden visade det sig att problem även har pågått regelbundet för linje 2. I slutet av år 2009 stoppade pluggarna drastiskt och denna relevanta förbättring undersöktes för jämförelse med linje ett, om eventuella processåtgärder i flingtorken utförts i form av material, styrsystem och driftinstruktioner. Inga tydliga, omfattande förändringar är dock rapporterade i Gruvöns interna affärssystem för service och underhåll.

Anläggningens flödesschema granskades med jämförelse av den utrustning den erhåller i dagsläget, där ett konstaterande av att inga skillnader råder.

Efter granskning av de rapporter som utförts (Salo 2000), (Carlson 2004), kan man konstatera att en mängd skillnader råder mellan linjerna. En tydlig skillnad är att betydligt mer ånga krävs för linje 1 än för linje 2.

3.2 Felsökningsmetoder

Från de beslutsmatriser som använts vid val av bäst lämpade metoder för felsökning, var loggning av temperaturer, luftflödesmätningar, montering av inspektionsglas samt kontroll av malspalter. Nedan kan man se de resulterande värden som framkom vid de grundläggande felsökningar som utförts.
3.2.1 Loggning temperaturer

Figur 7: Loggningsförlopp för temperaturer på fluffer linje två.

För att frambringa de betydande temperaturerna har mätresultat använts vid stabil, kontinuerlig drift. Temperaturvariationerna under dessa mätförlopp räknades om till medelvärden vilket ses i tabell 1 nedan.

Tabell 1: Medelvärden vid temperaturloggning för fluffer L1 respektive L2.

<table>
<thead>
<tr>
<th>(Snittvärde för medeltemperaturer vid tre olika tillfällen)</th>
<th>L1 [°C]</th>
<th>L2 [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa in:</td>
<td>48</td>
<td>44</td>
</tr>
<tr>
<td>Massa ut:</td>
<td>87</td>
<td>98</td>
</tr>
<tr>
<td>Varmluft in nedre:</td>
<td>101</td>
<td>108</td>
</tr>
</tbody>
</table>
3.2.2 Torrhaltsmätningar

Torrhaltsmätningar som utfördes för jämförelse av torrhalter på massan presenteras i tabell 2 nedan för linje 1 samt linje 2. De värden som presenteras har en felmarginal på 1 procent enligt Löwgren som är chef för kvalitetssupport på Gruvöns bruk.

Tabell 2: Resultat från torrhaltsmätningar på massa.

<table>
<thead>
<tr>
<th>(Provtagningstillfällen)</th>
<th>L1 [%]</th>
<th>L2 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-03-21:</td>
<td>50,8</td>
<td>54,1</td>
</tr>
<tr>
<td>2013-04-05:</td>
<td>53,4</td>
<td>55,6</td>
</tr>
<tr>
<td>2013-04-09:</td>
<td>50,1</td>
<td>55,7</td>
</tr>
<tr>
<td>2013-04-10:</td>
<td>50,9</td>
<td>55,1</td>
</tr>
<tr>
<td>Medel:</td>
<td>51,3</td>
<td>55,1</td>
</tr>
</tbody>
</table>

3.2.3 Luftflödesmätningar

Luftflödesmätningarna som skulle göras i inspektionsluckan för fluffern resulterade inte i värden som kunde användas i detta syfte. Med det instrument som användes under dessa mätningar kunde man inte få ut kurvor på hur luftflödet varierade, utan man fick endast fram värden vid givna tidpunkter. Dessa visade att en kraftig turbulens råder i vardera fluffers returledningar, men ett mått på hur stora dessa var kunde man inte påvisa då mätinstrumentet inte räckte till för detta.

Mätningar gjordes istället på tilluftsledningen för våttransportsfläkten, där flufferns returledning är infäst som kan ses i figur 8.

Figur 8: Tilluftsledning för våttransportfläkt där luftflödesmätningar gjorts.

5 Kristina Löwgren Chef kvalitetsprovning BillerudKorsnäs, intervju den 20 mars.
Mätningar för luftens hastighet gjordes sex gånger för vardera linje för att säkrare totalvärden för dessa skulle erhållas. De resulterande lufthastigheterna samt luftflödenas medelvärden kan hittas i tabell 3. De är baserade på ledningarnas diametrar som var 840 millimeter, med ett cirkulärt tvärsnitt. Formel för beräkningar av luftflöden hittas i (Alvarez 2006), och är \(q = v \times A \), där \(v \) är luftens hastighet och \(A \) rörets tvärsnittsarea.

Tabell 3: Resultat från luftflödesmätningar.

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lufthastighet (v = [\text{m/s}])</td>
<td></td>
</tr>
<tr>
<td>28,6</td>
<td>32,0</td>
</tr>
<tr>
<td>30,3</td>
<td>28,0</td>
</tr>
<tr>
<td>27,2</td>
<td>23,9</td>
</tr>
<tr>
<td>27,8</td>
<td>34,9</td>
</tr>
<tr>
<td>28,5</td>
<td>33,1</td>
</tr>
<tr>
<td>25,1</td>
<td>22,7</td>
</tr>
<tr>
<td>Medelhastighet (\bar{v} = [\text{m/s}])</td>
<td></td>
</tr>
<tr>
<td>27,92</td>
<td>29,10</td>
</tr>
<tr>
<td>Rördiameter (D = [\text{m}]):</td>
<td></td>
</tr>
<tr>
<td>0,84</td>
<td>0,84</td>
</tr>
<tr>
<td>Luftflöde (q = [\text{l/s}]):</td>
<td></td>
</tr>
<tr>
<td>15,47</td>
<td>16,13</td>
</tr>
</tbody>
</table>

3.2.4 Inspektionsglas

3.2.5 Malspaltshöjd

Enligt tidigare tester har det visat sig att lämpligt avstånd mellan malskivorna bör vara mellan 5 - 8 millimeter. Dessa avstånd är beprövade och har under längre tid visat på bästa möjliga kvalitetsutfall för denna process enligt Högberg. Distansmätningar visade att avståndet mellan malskivorna för linje 1 vara 7,5 ± 0,3 millimeter och för linje 2 var det 7,0 ± 0,3 millimeter.

6 Bo Högberg Mekaniker BillerudKorsnäs, intervju den 28 mars 2013.
3.3 Brainstormingmöte

Vid brainstormingmötet som tidigare nämndes, presenterades de grundläggande felsökningarna som gjorts för att överväga den troligen starkast bidragande orsaken för pluggarna i linje 1. Genom diskussion och samråd över eventuell huvudåtgärd som skulle utföras för eliminering av dessa, resulterade detta i att identifiera bidragande orsak till skillnader i torrhalter mellan linjerna.

Dessa skillnader var absolut tydligast utifrån tidigare utförda felsökningar. Resultaten från dessa lade den betydande grunden i den systematiska processutvecklingen. Resultat från felsökningar som bestämdes på brainstormingmötet kan ses nedan.

3.3.1 Torrhaltsmätningar massabana

Som nämnts tidigare kontrollerades torrhalten och dess fördelning på massabanan. Resultatet av dessa mätningar ses i tabell 4 nedan.

Tabell 4: Resultat av torrhaltsmätningar på massabana.

<table>
<thead>
<tr>
<th>Tre prover / område</th>
<th>VP1 (öster)</th>
<th>VP1 (mitt)</th>
<th>VP1 (väster)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP1 (öster)</td>
<td>46,56</td>
<td>47,01</td>
<td>48,94</td>
</tr>
<tr>
<td>VP1 (mitt)</td>
<td>45,69</td>
<td>49,42</td>
<td>49,51</td>
</tr>
<tr>
<td>VP1 (väster)</td>
<td>47,63</td>
<td>51,07</td>
<td>48,91</td>
</tr>
</tbody>
</table>

Medel: 46,63 49,16 49,12

3.3.2 Kontrollmätning av pressnyp

Pressnypet mellan valsarna kontrollerades för båda linjerna och resultaten av dessa kan ses i figur 10.

Figur 10: Avstånd för pressnyp på avvattningspress ett och två.
3.3.3 Koncentrationsmätningar

Resultat av prover på blandningens massakoncentration för båda linjerna ses i tabell 5 nedan. Proverna gjordes med olika driftsinställningar för kontroll av verkliga värden i samband med operatörernas visarutrustning.

Tabell 5: Resultat från koncentrationsprover.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Tid</th>
<th>Värde manöverrum [%]</th>
<th>Labvärde [%]</th>
<th>Avvikelse [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-April</td>
<td>14:00</td>
<td>3,0</td>
<td>3,18</td>
<td>-0,18</td>
</tr>
<tr>
<td></td>
<td>14:00</td>
<td>3,5</td>
<td>3,22</td>
<td>0,28</td>
</tr>
<tr>
<td></td>
<td>14:00</td>
<td>4,0</td>
<td>3,27</td>
<td>0,63</td>
</tr>
<tr>
<td></td>
<td>25-April</td>
<td>17:00</td>
<td>4,0</td>
<td>3,98</td>
</tr>
<tr>
<td>L2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-April</td>
<td>17:00</td>
<td>3,0</td>
<td>3,22</td>
<td>-0,22</td>
</tr>
<tr>
<td></td>
<td>17:00</td>
<td>3,5</td>
<td>3,75</td>
<td>-0,25</td>
</tr>
<tr>
<td></td>
<td>17:00</td>
<td>4,0</td>
<td>4,12</td>
<td>-0,12</td>
</tr>
</tbody>
</table>

3.3.4 Styrning avvattningspress

Vid kontroll av styrningen för avvattningspressen på linje 1 visade det sig att styrgränserna ej var optimala. Brytgränser för avvattningspressen är ställda så att utrustningen ska hålla så länge som möjligt utan haverier. Flera av dessa visade sig inte stämma överens med avvattningspressen för linje 2, då exempelvis momentet på pressvalsen (styr av huvudmotorns spänning), aldrig kunde uppgå till önskat moment. Momentgränsen för linje 1 optimerades för att kunna avvattna massan mer än vad som tidigare gjorts, vilket leder till torrare massa.

Momentet på avvattningspressarna styrs som nämnts tidigare av huvudmotorernas spänning, vilket varieras beroende på den belastning som uppstår för valsarna. Vad som mest påverkar detta motstånd är massaflödet till avvattningspressen, kombinerat med rotationshastigheten på valsarna, samt massablandningens koncentration. Dessa faktorer i kombination bidrar till olika värden för motorernas belastningsspänning och för linje 1 har dessa gränser inte varit lika höga som för linje 2.

För att konstataera att optimering av moment för linje 1 är korrekt genomförd och överensstämmer med linje 2, gjordes torrhaltsmätningar med fast angivna inställningar, dock med variation av moment. Detta kan återskådas i tabell 6, där momenten har körts på 60, 70 respektive 80%.
Tabell 6: Torrhaltsmätningar med momentvariation för avvattningspress.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>35</td>
<td>280</td>
<td>3,6</td>
<td>10,0</td>
<td>52,55</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>38</td>
<td>280</td>
<td>3,6</td>
<td>10,0</td>
<td>53,04</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>80</td>
<td>280</td>
<td>3,6</td>
<td>10,0</td>
<td>54,29</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>36</td>
<td>280</td>
<td>3,6</td>
<td>11,4</td>
<td>50,86</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>38</td>
<td>280</td>
<td>3,6</td>
<td>11,4</td>
<td>52,47</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>41</td>
<td>280</td>
<td>3,6</td>
<td>11,4</td>
<td>53,62</td>
</tr>
</tbody>
</table>

3.4 Uppföljningsmöte

Ett uppföljningsmöte hölls som baserades på frågeställningar och beslut som togs på förra sammanträdet. Här diskuterades om identifiering av bidragande orsak till torrhaltskillnader uppkommit och om åtgärder av detta skett. Torrhaltskillnaderna hade sin rot i avvattningspressens momentstyrning som nämnts tidigare. Optimeringen av detta bidrog även till att något högre produktion kunde köras för linje ett än vad som tidigare varit möjligt.

3.5 Uppföljning och ekonomisk utveckling

Då optimering av processen skett gjordes uppföljning av detta för att konstatera om eventuell eliminering eller reducering av pluggar skett. Från att optimeringen genomfördes den 25 april 2013 tills den 22 maj 2013 vilket var sluttiden för uppföljningen, hade fluffern på linje 1 inte pluggat en enda gång.

Enligt förstudien har pluggar uppträtt cirka tre gånger per månad enligt Gruvöns rapporteringssystem (IFS). Vid samtal med operatörer och arbetsledare på avdelningen kan denna summa ökas till det dubbla, vilket nämnts tidigare i rapporten och detta medför att en reducering av pluggar har skett med åtminstone 60 stycken per år.

Produktionsförskjutning i tid vid en pluggad fluffer är cirka 50 minuter enligt personal på flingtorken. Detta blir en totaltid på 50 timmars onödigt arbete per år och ett minskat täckningsbidrag genom förlorad försäljning på cirka 800 000 kronor.

Förutom att arbetstid och resurser minskat i samband med denna processutveckling är det största positiva bidraget att högre tillförlitlighet finns.
4. Diskussion

4.1 Utvärdering av data

4.1.1 Förstudie

Det tidigare projekt som utfördes under år 2012 gav en bra grund i förstudien för detta projekt. Bra dokumentation av felsökningar och åtgärder kunde lätt överskådas och även diskuteras, då hänvisningar till berörda personal tydligt var angivna. Detta medförde bättre koncentration av nödvändiga felsökningar som utfördes i detta projekt, då man kunde utesluta de som tidigare nämnts under föregående kapitel.

De rapporter som erhölls angående kapacitetsmätningar från ABB och Andritz som granskades, visade som tidigare nämnt skillnader i exempelvis ångförbrukning. Detta spelar förmodligen roll i det avseende att mer värme från ånga krävs för att torka massan i cyklonerna för linje 1, eftersom massan innan detta projekts optimering varit fuktigare då den har transporterats in i dessa. Den slutliga torrhalten på massabalarna är till stor del styrd i detta avseende och medför begränsningar för variabla parametrar i processen. Man ska dock ha i beaktande att dessa rapporter för kontroll av anläggningen är utförda för flera år sedan och kanske inte överensstämmer med dagens processförbrukning.

4.1.2 Felsökningsmetoder

Olika matriser användes för att välja ut felsökningsalternativ. Främst användes dessa för att ta med så många faktorer som möjligt i beaktande, samt att inte vara jäv då det annars inte kunnat räknats till ett systematiskt arbetsätt. De matriserna som användes sällade bort mindre lämpade felsökningsalternativ som främst togs bort med avseende på tidsplaneringen.

De metoder och felsökningar som genomförts var inte tänkta att lösa problemet med pluggarna, utan att utesluta och avgränsa områden för processen. Vissa metoder ger säkrare resultat än andra och detta har givetvis tagits i beaktande vi de övervägningar som skett.

Utifrån beslutsmatriserna angående vilka felsökningsmetoder som skulle utföras, valdes det bort två alternativ. Ett av dem var att med ett teleskåpinstrument observera massauppvatten i flufferns returlinje, och det andra var att göra närmare analyser av massans struktur. Dessa har med konstaterande i efterhand visat sig vara lämpade för bortval. Eftersom inspektionsglaset monterades har observationer kunnat utföras både tydligare och mer omfattande än vad som skulle ha varit möjligt med teleskåpinstrumentet. Analyser av massan hade varit mycket resursträdande då övrig personal hade varit tvingade att lägga ner tid och arbeta på detta. Om detta hade lett till identifiering av att torrhalter för massan mellan linjerna skiljde sig åt vet jag inte, men känslan är att mer nödvändiga metoder istället utfördes.

Reducering av felsökningar skedde främst för att kunna hålla projektet inom de tidsramar som begränsar arbetet. Vid en systematisk processutveckling ska man börja i rätt ände för att ingen onödig tid ska spillas på till exempel fel metodval, fel prioriteringar, slarv och annat.

Extra övervägande gjordes då luftflödesmätningarna utfördes och sammanställdes. Detta med tanke på att väldigt turbulens uppstod i de inspektionsluckor som mätningarna var tänkta att göras i. Mätinstrumentet som användes kunde inte ta upp användbara resultat då luftflödet pendlade med höga hastigheter i både positiv och negativ riktning. Att instrumentet visade att turbulens existerade var dock mycket bra men inget tillförlitligt mått på hur stort detta var
gick att säkerställa, vilket var av störst intresse i detta sammanhang. För att få ungefärliga mått på luftflöden gjordes mätningar istället i ledningen till våttransportfläkten, vilket är det luftflöde som skapar undertrycket i flufferns returledning. Detta bidrar i sin tur till att den släckande massan sugs med i luftflödesriktningen för att sedan torkas i vidare process. Mätningar vid detta område gav dock inte svaret på hur tillståndet inuti flufferns returledning var, vilket det primära målet var för luftflödesmätningarna.

Torrhaltsmätningarna som utfördes i detta projekt var av större noggrannhet än den befintliga metod som Gruvön använde under denna tid. Den historik som kunde hittas och granskas för torrhalter på linje 1 och 2, var något missvisande med tanke på bristande mätnoggrannhet. Det som fanns rapporterat var att massan för linje 2 var några procent torrare än massan för linje 1. Slutsatsen som togs angående detta var att lika stort mängd mätfel uppstår för linje 1 som för linje 2, vilket ändå resulterar i trovärdiga medelvärden och var det relevanta i detta fall.

4.1.3 Åtgärder och uppföljning

Då felsökningarna utförts som nämns ovan, anordnades ett brainstormingmöte med berörda parter för detta projekt. Resultaten presenterades för att sedan kunna diskuteras tillsammans i hopp om att hitta en åtgärd att införa. Anledningen med att inbjuda alla olika parter på detta möte var att få så bred expertis över området som möjligt. Mötet resulterade som nämnts tidigare, i att försöka identifiera varför torrhalten för linje 1 inte uppgår i de nivåer som återfinns hos linje 2. Beslut om nya felsökningar som skulle göras hittas tidigare i rapporten och dessa skulle ha gjorts innan nästa sammanträde som var uppföljningsmötet.

Under uppföljningsmötet presenterades resultaten av de nya felsökningarna vilket lade fokus på styrningen av avvattningspressen. Beslut om att optimera driften för denna delprocess togs då man efter felsökningarna insett att den inte gått optimalt på en längre tid och heller inte på
liknande sätt som linje 2. Efter att parametrar för drivningen justerats behövdes ett
konstaterande av att optimeringen givit samma förutsättningar för torrhalten på båda linjerna.
Parametrarna som optimerades styrde avvattningspressens moment, vilket är en betydande del
i vilken torrhalt man vill ha på massan ut ifrån denna delprocess. Torrhaltsprover gjordes för
linje 1 och 2, då operatörerna körde maskinerna med samma förutsättningar. Resultaten som
nämnts tidigare anses vara inom felmarginalen, då torrhaltsprover har en variabel noggrannhet
på en procent.

4.2 Problem i samband med arbete

Svårigheter att få tag på konkret material under projektets gång har ständigt förekommit.
Mycket relevant information går ej att hitta dokumenterat, vilket i sin tur har medfört till
mängder av samtal och intervjuer. Denna form av information går oftast inte att lita till hundra
procent på, utan är många gånger bara spekulationer och antaganden, vilket medför att egen
kontroll måste ske. Det är dock oftast en bra riktning och ett stort steg på vägen att kunna
prata och diskutera med erfaren personal.

Eftersom brukets produktion till stor del styrt arbetsflödet i detta projekt, behövdes många
moment anpassas. Flera av felsökningarna samt uppföljningen krävde att produktion skedde
för anläggningen. Övriga fel och haverier kunde även medföra att det var produktionsstopp
och mätningar fick skjutas upp. Noggrann planering och tydligt informationsflöde var ett
måste vid arbeten på Gruvöns bruk, då säkerheten är av högsta prioritet vid liknande arbeten.

Vid flera temperaturloggningar visade det sig att glapp i utrustning uppstått och flera
mätningar som gjordes raderades och fick göras om. Liknande problem var medräknat i
tidsplaneringen och fortsatt arbete anpassades efter detta.
5. Slutsatser

Från en systematisk processutveckling med innehållande förstudie, felsökningar och åtgärder, har större tillgänglighet på Gruvöns flingtork införts. Projektet har lett till resursbesparingar, minskade arbetsinsatser och produktionsstopp minskat med åtminstone 50 timmar per år.

För att eliminera de pluggar som ständigt uppstå för fluffern på linje 1 i Gruvöns flingtork, behövdes en momentoptimering av en avvattningspress göras. Detta bidrog i sin tur till att massans torrhalt som leds ner till fluffern var högre.

Eftersom torrhalten ökat har även en ytterligare stor ekonomisk vinst gjorts i form av energikostnader, då inte lika stor mängd ånga behöver tillsättas för att torka massan för linje 1.

Utifrån muntliga intervjuer som skett med driftpersonal på flingtorken, kan man konstatera att en stabilare produktion uppstått efter optimering av processen. Det går att producera mer massa per tidsenhet utan att pluggar uppstår, vilket i sin tur leder till en bättre ekonomisk vinst.

5.1 Utveckling av projekt

Extra påbyggnad av detta projekt kan vara att utföra SPS (statistisk processtyrning) över anläggningen, för att ta fram lämplig driftmanual med maskininställningar. Denna metod kan identifiera nivåer och värden man vill styra anläggningen efter och i sin tur medföra optimala driftförhållanden.

Ytterligare utveckling för avdelningen vore att kunna reglera processens ångkonsumtion på ett bättre sätt. I dagsläget finns det ett spjäll på vardera linje, som antingen är öppet eller stängt för ånga att ledas in. Vid minskad konsumtion av detta kan stora ekonomiska besparingar göras.

Flingtorken byggdes under 70-talet och större delen av den befintliga utrustningen anses vara gammal vilket medför nedsatt noggrannhet på visarutrustning, givare och annat. En omfattande kontroll och eventuellt utbyte av dessa skulle medföra en säkrare produktion.

Det som dock bör ske i framtiden är tydligare dokumentationer av arbetsordrar, optimeringar av processer och eventuellt nya driftinstruktioner. Detta är viktigt med tanke på att små ändringar i en del av en process kan bli stora "negativa" skillnader längre fram i ledet och dessa upptäcks med stor sannolikhet både tidigare och lättare om dokumentation angående detta finns.
Jag vill visa stor tacksamhet till alla personer som hjälpt till på olika sätt och vis i detta projekt. Den tid jag har fått av alla genom intervjuer, möten och praktiska utföranden har varit en stor fördel i projektets färdigställande ur det samspel som skett utifrån uppsatt tidsplanering.

Extra stort tack vill jag tilldela Thomas M Nilsson och Jörgen Pettersson, uppdragsgivare och handledare på BillerudKorsnäs AB. Att tillsammans med er ha satt upp tydliga mål och avgränsningar för att kunna utföra och färdigställa arbetet med att eliminera pluggar i fluffer. Stor mängd kunskap har både använts och erhållits under projektets tid, vilket var syftet med detta projekt och framförallt min personliga utveckling.
Referenslista

Sunds AB (1971). Instruktionsbok: Sund-Impco valspress typ vpd 200B. Sundsvall: Sunds AB
Bilaga 1: Flodesschema för flingtork Gruvön's bruk
(Flödesschema från arkiv Gruvön, BillerudKorsnäs AB).
Bilaga 2: Planering av projekt

Tidsplanering

<table>
<thead>
<tr>
<th>v.4</th>
<th>v.5</th>
<th>v.6</th>
<th>v.7</th>
<th>v.9</th>
<th>v.10</th>
<th>v.12</th>
<th>v.13</th>
<th>v.15</th>
<th>v.17</th>
<th>v.19</th>
<th>v.21</th>
<th>v.22</th>
<th>v.</th>
<th>v.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kursstart</td>
<td>Intro, Gruppen</td>
<td>Projektstart/plan</td>
<td>Uppstartsdatum</td>
<td>Loggning</td>
<td>Info/sökning över process</td>
<td>Uppmätning/alternativ, val</td>
<td>Tolking av resultat</td>
<td>Delredovisning (27/3)</td>
<td>Val av åtgärd</td>
<td>Evenuell åtgärd</td>
<td>Uppföljning</td>
<td>Prel. rapport för opponering (2.9)</td>
<td>Shareдовisning (3.9)</td>
<td>Godkännande av rapport</td>
</tr>
</tbody>
</table>

Figur 1: Tidsplanering för projekt systematisk processutveckling, fluffer.

Figur 2: Ganttschema utarbetat från tidsplanering.

Figur 3: Redigerat Ganttschema under projektets gång

- B2 -
<table>
<thead>
<tr>
<th>Förslag</th>
<th>Åtgärd</th>
</tr>
</thead>
</table>
| Kontrollera samtliga ventiler! | *Koncmätaren (441i122), bytt på upplösare 1
 *Inget läckage förekom vid HC3
 *Inget läckage på ventil 441i128
 *Vid omrörare LC-kar var ventil för tätningssvatten helt öppen. Flödesmätare ska monteras för att säkerställa rätt flöde på tätningen, detta är ej utfört |
| Uppmätning av pressnyp! | *Enl. instruktion ska pressnypet vara 10mm (pluss, minus 4mm)
 *Mek kontrollerade nypet och det visade 8,8-8,9mm för båda pressarna |
| Kontroll av effekter för motordrifter på VP1 och VP2! | *Finns i någon bilaga!!!
 *Linje 2 har en svårigare gång, oklart varför |
| Kontroll av rivarskruvar! | *Skruvarna är kontrollerade och inget skiljer dem åt
 *Dock blir rotationsvakten nerkladdad av fett, vilket kan påverka driften av skruven |
| Kontrollera avvattningen för valsar på VP1 och VP2! | *Förövik har gjorts utan resultat, kontakt med Metso sker inom kort
 *Utrustningen för denna mätning finns och tester ska göras |
| Leta reda på rapporter angående luftflöden, ånga m.m. som tidigare utförts | |
| Eventuellt utbyte av malsegment för fluffern på linje ett, då konditionen på detta är osäker | |
| Ingående lufttemperatur på fluffer 1 och 2 | |
| Massan fastnar i utloppet av fluffer 1 | |
| Olika temp på ingående massa till fluffer 1 och 2 | |
| Recirkulation av luft i torkstegen (torkcyklon 2), kontroll och jämförelse för linje 1 och 2 | |
| Sugförmåga i vattnansportfläkt, (kontrollera trycket i utloppet från fluffer 1 och fluffer 2) | |
| Driftbetingelser, logga ström på fluffer 1 samt vattnansportfläkt 1. Hur ser förloppet ut i samband med pluggning | |
| Massan bygger i utloppet, kontrollera regelbundet hur fort detta sker och notera varannan timme | |
Bilaga 4: Matriser för felsökningsalternativ

Tabell 1: Relativ beslutsmatris (Pugh).

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Inspekt. glas (REF)</th>
<th>Flödesmätning utlopp</th>
<th>Tele. kamera</th>
<th>Temp. mätning</th>
<th>Malspalt</th>
<th>Torrhalts mätning</th>
<th>Ockulär innan/efter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kostnad</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tidsåtgång</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Kunskap</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prod. påverkan</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Enkelhet</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Omfattning</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Personal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Aktuellt</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Noggrannhet</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Betryg							
Sum +	5	2	5	3	4	4	2
Sum 0	2	3	4	5	5	4	
Sum -	2	4	0	1	0	3	
Nettovärde	0	3	-2	5	2	4	-1

| Ranking | | | | | | | |
| Go | Ja | Ja | Nej | Ja | Ja | Ja | Nej |

Tabell 2: Viktsbestämningsmatris, parvis jämförelse.

<table>
<thead>
<tr>
<th>Kostn.</th>
<th>Tid</th>
<th>Kunskap</th>
<th>Prod. påverkan</th>
<th>Enkelhet</th>
<th>Omfattning</th>
<th>Personal</th>
<th>Aktuellt</th>
<th>Noggrannhet</th>
<th>SUM</th>
<th>SUM/TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>1</td>
<td>0,5</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>5,5</td>
<td>0,15</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,03</td>
</tr>
<tr>
<td>0,5</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>0,5</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>5</td>
<td>0,14</td>
</tr>
<tr>
<td>0,5</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>6,5</td>
<td>0,18</td>
</tr>
<tr>
<td>0,5</td>
<td>1</td>
<td>0,5</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0,11</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,06</td>
</tr>
<tr>
<td>0,5</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0,5</td>
<td>6</td>
<td>0,17</td>
</tr>
<tr>
<td>0,5</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,5</td>
<td>-</td>
<td>6</td>
<td>0,17</td>
</tr>
</tbody>
</table>

| SUM | 36 | 1 |
Tabell 3: Skala viktsfaktorer.

<table>
<thead>
<tr>
<th></th>
<th>Sum/TOT=σi</th>
<th>Skala 1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kostnad</td>
<td>0,15</td>
<td>3</td>
</tr>
<tr>
<td>Tidsåtgång</td>
<td>0,03</td>
<td>1</td>
</tr>
<tr>
<td>Kunskap</td>
<td>0,14</td>
<td>3</td>
</tr>
<tr>
<td>Prod. påverkan</td>
<td>0,18</td>
<td>5</td>
</tr>
<tr>
<td>Enkelhet</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Omfattning</td>
<td>0,11</td>
<td>2</td>
</tr>
<tr>
<td>Personal</td>
<td>0,06</td>
<td>2</td>
</tr>
<tr>
<td>Aktuellt</td>
<td>0,17</td>
<td>4</td>
</tr>
<tr>
<td>Noggrannhet</td>
<td>0,17</td>
<td>4</td>
</tr>
</tbody>
</table>

\[Wi = (σi/σ_{max}) \times w_{max} \]

Tabell 4: Beslutsmatris för felsökningsmetoder.

<table>
<thead>
<tr>
<th></th>
<th>Ideal</th>
<th>Insp. glas (REF)</th>
<th>Flöde utlopp</th>
<th>Tek. kamera</th>
<th>Temp. mått</th>
<th>Maspall</th>
<th>Torhalls mått</th>
<th>Ockulär innan/efter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kostnad</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Tidsåtgång</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Kunskap</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>15</td>
<td>4</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Prod. påverkan</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Enkelhet</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Omfattning</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Personal</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Aktuellt</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td>4</td>
<td>16</td>
<td>5</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Noggrannhet</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td>3</td>
<td>12</td>
<td>5</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>

\[T=\sum t \]
\[T/T_{max} \]
\[\text{Rankning} \]

- B4 2 -
Bilaga 5: Temperaturloggar för fluffer L1 & L2

Figur 1: Loggning av temperatur för L1 utförd den 1-3 mars 2013.
Figur 2: Granskningsbild av spik för L1 vid temperaturloggning.
Figur 3: Temperaturförändring i samband av filterbyte L1.
Figur 5: Kontinuerlig drift med visning av temperatur fra loggning av L2