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Abstract. We consider the discrete Boltzmann equation for binary gas mix-

tures. Some known results for half-space problems and shock profile solutions

of the discrete Boltzmann for single-component gases are extended to the case
of two-component gases. These results include well-posedness results for half-

space problems for the linearized discrete Boltzmann equation, existence results

for half-space problems for the weakly non-linear discrete Boltzmann equa-
tion, and existence results for shock profile solutions of the discrete Boltzmann

equation. A characteristic number, corresponding to the speed of sound in

the continuous case, is calculated for axially symmetric models. Some explicit
calculations are also made for a simplified 6 + 4 -velocity model.

1. Introduction. We consider the discrete Boltzmann equation (DBE) for two-
component gases and extend some known results for single-component gases to this
case. In the planar stationary case systems of ODEs with the same structure as
the systems obtained for single species, cf. [10],[4],[5], and [6], are obtained. It is
then possible to extend the well-posedness results for the half-space problems for
the linearized DBE in [4], the existence results for the half-space problems for the
weakly non-linear DBE in [5], and the existence results for shock profile solutions
of the DBE in [9], to the case of binary mixtures. We exemplify some of our results,
by explicit calculations for a simplified plane 6 + 4 -velocity model. However, we
want to stress that our general results are valid for any finite number of velocities.

We give below a brief review of related publications. Half-space problems for
the Boltzmann equation are of great importance in the study of the asymptotic
behavior of the solutions of boundary value problems of the Boltzmann equation
for small Knudsen numbers [28],[29]. Mathematical results for half-space problems
for the Boltzmann equation for a single-component gas is reviewed in [3]. The
Kyoto group of Y. Sone, K. Aoki, and coworkers, has under a long time considered
problems related to these questions, both from a theoretical and numerical point of
view [28],[29]. Some of these results have also been extended to the case of mixtures
[31].
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In the planar stationary case, the DBE reduces to a system of ODEs. It is well-
known that the Boltzmann equation can be approximated up to any order by the
DBE [13],[22],[27].

Half-space problems for the linearized Boltzmann equation are well investigated
[2], and in the case of binary mixtures by Aoki, Bardos and Takata in [1]. For the
linearized DBE a classification of well-posed half-space problems has been made in
[4], based on results in [10] on the dimensions of the corresponding stable, unstable
and center manifolds for singular points (Maxwellians for the DBE) to general
systems of ODEs of the same type.

In [33] Ukai, Yang and Yu studied the non-linear case with inflow boundary
conditions, assuming that the solutions tend to an assigned Maxwellian at infinity.
The conditions on the data at the boundary needed for the existence of a unique (in a
neighborhood of the assigned Maxwellian) solution of the problem are investigated.
Similar problems have also been studied for the DBE in [32],[23],[24], and [5]. The
quite general results in [5] include (for DVMs) the results obtained by Ukai, Yang
and Yu in [33] for the continuous Boltzmann equation. In this connection, we also
mention the recent paper by Yang [34], and the recent work by Liu and Yu in [26]
on the center manifold theory of the half-space problem for the full Boltzmann
equation, where also more references for the continuous case can be found.

The existence of shock profile solutions, c.f. [18] and [25], have been studied for
the DBE in [16] and [9]. For the shock wave problem the DBE also becomes a
system of ODEs. In [9] existence of shock profile solutions for the DBE is proved.
The results concern weak shocks, i.e., when the shock speeds are close to a typical
speed, corresponding to the sound speed in the continuous case. The shock-wave
problem have also been studied for several explicit discrete velocity models for
mixtures, see e.g. [19].

The case when one of the gases is a non-condensable gas (cf. [30]) is not included
in this paper, but will be treated in a future paper [7].

The paper is organized as follows. In Section 2 we present the DBE for mixtures
and some of its properties. We make an expansion around a bi-Maxwellian and
obtain the linearized collision operator and the quadratic part and conclude that
we actually obtain a system with the same structure as in the case of one species.
We also remind a result in [10] on the dimensions of the corresponding stable,
unstable and center manifolds for singular points (bi-Maxwellians for DVMs for
binary mixtures) to general systems of ODEs of the same type. Then we present
the extension of our results for boundary layers in [4] and [5], in Section 3, and for
shock profiles in [9], in Section 4, to the case of binary mixtures. In Section 5, we
calculate a number, corresponding to the speed of sound in the continuous case,
for axially symmetric models. Finally, in Sections 6 and 7 we exemplify our theory
for an explicit simplified model. We find exact shock profile solutions in Section 6
and consider non-linear boundary layers in the case of a moving wall with constant
speed in Section 7, for a plane 6 + 4 -velocity model, where we have assumed that
our flow is symmetric with respect to the x -axis.

2. Discrete velocity models for binary mixtures. The general discrete veloc-
ity model (DVM), or the discrete Boltzmann equation, for a binary mixture of the
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gases A and B reads
∂fAi
∂t

+ ξAi · ∇xf
A
i = QAAi (fA, fA) +QBAi (fB , fA), i = 1, ..., nA,

∂fBj
∂t

+ ξBj · ∇xf
B
j = QABj (fA, fB) +QBBj (fB , fB), j = 1, ..., nB

(1)

where Vα =
{
ξα1 , ..., ξ

α
nα

}
⊂ Rd, α, β ∈ {A,B} are finite sets of velocities, fαi =

fαi (x, t) = fα(x, t, ξαi ) for i = 1, ..., nα, and fα = fα (x, t, ξ) represents the micro-
scopic density of particles (of the gas α) with velocity ξ at time t ∈ R+ and position
x ∈ Rd. We denote by mα the mass of a molecule of the gas α. Here and below,
α, β, γ ∈ {A,B}.

For a function gα = gα(ξ) (possibly depending on more variables than ξ), we will
identify gα with its restriction to the set Vα, but also when suitable consider it like
a vector function

gα = (gα1 , ..., g
α
nα), with gαi = gα (ξαi ) .

Then fα = (fα1 , ..., f
α
nα) in Eq.(1).

The collision operators Qβαi (fβ , fα) in (1) are given by

Qβαi (fβ , fα) =
nα∑
k=1

nβ∑
j,l=1

Γklij (β, α) (fαk f
β
l − f

α
i f

β
j ) for i = 1, ..., nα,

where it is assumed that the collision coefficients Γklij (β, α), with 1 ≤ i, k ≤ nα and
1 ≤ j, l ≤ nβ , satisfy the relations

Γklij (α, α) = Γklji (α, α) and Γklij (β, α) = Γijkl(β, α) = Γlkji(α, β) ≥ 0, (2)

with equality unless the conservation laws

mαξ
α
i +mβξ

β
j = mαξ

α
k +mβξ

β
l and mα |ξαi |

2 +mβ

∣∣∣ξβj ∣∣∣2 = mα |ξαk |
2 +mβ

∣∣∣ξβl ∣∣∣2
are satisfied. We denote

f =
(
fA, fB

)
=
(
fA (ξ) , fB (ξ)

)
, g =

(
gA, gB

)
=
(
gA (ξ) , gB (ξ)

)
,

and Q(f, f) =
(
QAA(fA, fA) +QBA(fB , fA), QAB(fA, fB) +QBB(fB , fB)

)
.

Then the collision operator Q(f, f) can be obtained from the bilinear expressions

Qi (f, g) =
1
2

nA∑
j,k,l=1

Γklij (A,A)
(
fAk g

A
l + gAk f

A
l − fAi gAj − gAi fAj

)
+

1
2

nA∑
k=1

nB∑
j,l=1

Γklij (B,A)
(
fAk g

B
l + gAk f

B
l − fAi gBj − gAi fBj

)
, i = 1, ..., nA, and

QnA+i (f, g) =
1
2

nB∑
k=1

nA∑
j,l=1

Γklij (A,B)
(
fBk g

A
l + gBk f

A
l − fBi gAj − gBi fAj

)
+

1
2

nB∑
j,k,l=1

Γklij (B,B)
(
fBk g

B
l + gBk f

B
l − fBi gBj − gBi fBj

)
, i = 1, ..., nB ,

Denoting Q(f, g) = (Q1 (f, g) , ..., Qn (f, g)), with n = nA + nB , we see that, for
arbitrary f and g

Q (f, g) = Q (g, f) ,
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and by the relations (2), with h =
(
hA, hB

)
,

〈h,Q (f, g)〉 =

=
1
8

nA∑
i,j,k,l=1

Γklij (A,A)
(
hAi + hAj − hAk − hAl

) (
fAk g

A
l + gAk f

A
l − fAi gAj − gAi fAj

)
+

1
4

nA∑
i,k=1

nB∑
j,l=1

Γklij (B,A)
(
hAi + hBj − hAk − hBl

) (
fAk g

B
l + gAk f

B
l − fAi gBj − gAi fBj

)
+

1
8

nB∑
i,j,k,l=1

Γklij (B,B)
(
hBi + hBj − hBk − hBl

) (
fBk g

B
l + gBk f

B
l − fBi gBj − gBi fBj

)
.

(3)

A vector φ =
(
φA, φB

)
is a collision invariant if and only if

φαi + φβj = φαk + φβl , (4)

for all indices 1 ≤ i, k ≤ nα, 1 ≤ j, l ≤ nβ and α, β ∈ {A,B}, such that Γklij (β, α) 6=
0. By the relation (3)

〈φ,Q (f, f)〉 =
1
4

nA∑
i,j,k,l=1

Γklij (A,A)
(
φAi + φAj − φAk − φAl

) (
fAk f

A
l − fAi fAj

)
+

1
2

nA∑
i,k=1

nB∑
j,l=1

Γklij (B,A)
(
φAi + φBj − φAk − φBl

) (
fAk f

B
l − fAi fBj

)
+

1
4

nB∑
i,j,k,l=1

Γklij (B,B)
(
φBi + φBj − φBk − φBl

) (
fBk f

B
l − fBi fBj

)
. (5)

which is zero, independently of our choice of non-negative vector f (fαi ≥ 0 for all
1 ≤ i ≤ nα), if and only if φ is a collision invariant.

We consider below (even if this restriction is not necessary in our general reason-
ing) only DVMs, such that any collision invariant is of the form

φ =
(
φA, φB

)
, with φα = φα(ξ) = aα +mαb · ξ + cmα |ξ|2 , (6)

for some constant aA, aB , c ∈ R and b ∈ Rd. In this case the equation

〈φ,Q (f, f)〉 = 0

has the general solution (6). Discussions on constructions of DVMs for binary
mixtures can be found in e.g. [11],[12],[20],[21],[14] and [15].

A binary Maxwellian distribution (or just a bi-Maxwellian) is a function M =(
MA,MB

)
, such that

Q(M,M) = 0 and Mα
i ≥ 0 for all 1 ≤ i ≤ nα.

All bi-Maxwellians are of the form

M = eφ, i.e. M =
(
MA,MB

)
, with Mα = eφ

α

= eaα+mαb·ξ+cmα|ξ|2 , (7)

where φ =
(
φA, φB

)
is given by Eq.(6). Assuming that f is non-negative, we let
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φ = log f in Eq.(5) and obtain that

〈log f,Q (f, f)〉 =
1
4

nA∑
i,j,k,l=1

Γklij (A,A)
(
fAk f

A
l − fAi fAj

)
log

fAi f
A
j

fAk f
A
l

+
1
2

nA∑
i,k=1

nB∑
j,l=1

Γklij (B,A)
(
fAk f

B
l − fAi fBj

)
log

fAi f
B
j

fAk f
B
l

+
1
4

nB∑
i,j,k,l=1

Γklij (B,B)
(
fBk f

B
l − fBi fBj

)
log

fBi f
B
j

fBk f
B
l

≤ 0,

with equality if and only if
fαk f

β
l = fαi f

β
j

for all indices 1 ≤ i, k ≤ nα, 1 ≤ j, l ≤ nβ and α, β ∈ {A,B}, such that Γklij (β, α) 6=
0, or equivalently, if and only if f is a bi-Maxwellian. Hence, f is a bi-Maxwellian
if and only if log f is a collision invariant.

For a bi-Maxwellian M =
(
MA,MB

)
, we obtain, by denoting

f = M +
√
Mh, (8)

in Eq.(1), the system
∂h

∂t
+ ξ · ∇xh = −Lh+ S (h) ,

where ξ·∇xh = (ξA1 ·∇xh
A
1 , ..., ξ

A
nA ·∇xh

A
nA , ξ

B
1 ·∇xh

B
1 , ..., ξ

B
nB ·∇xh

B
nB ). Furthermore,

L is the linearized collision operator (n× n matrix, with n = nA + nB) given by

Lh = − 2√
M
Q(M,

√
Mh), (9)

and the quadratic part S is given by

S (h, h) =
1√
M
Q(
√
Mh,

√
Mh). (10)

By Eq.(3) and the relations Mα
i M

β
j = Mα

kM
β
l 6= 0, we obtain the equality

〈g, Lh〉 = −2
〈

g√
M
,Q(M,

√
Mh)

〉
=

1
4

nA∑
i,j,k,l=1

Γklij (A,A)
(√

MA
l g

A
k +

√
MA
k g

A
l −

√
MA
j g

A
i −

√
MA
i g

A
j

)

×
(√

MA
l h

A
k +

√
MA
k h

A
l −

√
MA
j h

A
i −

√
MA
i h

A
j

)
+

1
2

nA∑
i,k=1

nB∑
j,l=1

Γklij (B,A)
(√

MB
l g

A
k +

√
MA
k g

B
l −

√
MB
j g

A
i −

√
MA
i g

B
j

)

×
(√

MB
l h

A
k +

√
MA
k h

B
l −

√
MB
j h

A
i −

√
MA
i h

B
j

)
+

1
4

nB∑
i,j,k,l=1

Γklij (B,B)
(√

MB
l g

B
k +

√
MB
k g

B
l −

√
MB
j g

B
i −

√
MB
i g

B
j

)

×
(√

MB
l h

B
k +

√
MB
k h

B
l −

√
MB
j h

B
i −

√
MB
i h

B
j

)
.
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Hence, the matrix L is symmetric, i.e.

〈g, Lh〉 = 〈Lg, h〉
for all g and h, and semi-positive, i.e.

〈h, Lh〉 ≥ 0

for all h. Also 〈h, Lh〉 = 0 if and only if√
Mα
k h

β
l +

√
Mβ
l h

α
k =

√
Mα
i h

β
j +

√
Mβ
j h

α
i (11)

for all indices 1 ≤ i, k ≤ nα, 1 ≤ j, l ≤ nβ , and α, β ∈ {A,B}, satisfying Γklij (β, α) 6=
0. We let h =

√
Mφ in Eq.(11), and obtain Eq.(4), by the relations Mα

i M
β
j =

Mα
kM

β
l 6= 0. Hence,

Lh = 0 if and only if h =
√
Mφ,

where φ is a collision invariant. In consequence,〈
S (h, h) ,

√
Mφ

〉
= 〈Q (f, f) , φ〉+

〈
h, L
√
Mφ

〉
= 0

for all collision invariants φ.
In the planar stationary case our system for mixtures reads

D
dh

dx
+ Lh = S(h, h), x ∈ R,

where D =
(
DA 0
0 DB

)
, with Dα = diag(ξα,11 , ..., ξα,1nα ), and the operators L and

S are given by Eqs.(9)-(10).
We consider below the case when D is non-singular, i.e. when all ξα,1i 6= 0 are

non-zero. For the case of singular matrices D, see Remark 5 below.
We denote by n±, where n+ + n− = n, and m±, with m+ + m− = q, the

numbers of positive and negative eigenvalues (counted with multiplicity) of the
matrices D and D−1L respectively, and by m0 the number of zero eigenvalues of
D−1L. Moreover, we denote by k+, k−, and l, with k+ + k− = k, where k + l = p,
the numbers of positive, negative, and zero eigenvalues of the p × p matrix K
(p = d + 3 for normal DVMs for binary mixtures), with entries kij = 〈yi, yj〉D =
〈yi, Dyj〉, such that {y1, ..., yp} is a basis of the null-space of L, N(L). In our case,

span(y1, ..., yp) = N(L) = span
(
RAM

1/2, RBM
1/2,M1/2ξ1, ...,M1/2ξd,M1/2 |ξ|2

)
,

where RAh = (h1, ..., hnA , 0, ..., 0) and RBh = (1 − RA)h for h ∈ Rn. Here and
below, we denote by 〈·, ·〉 the Euclidean scalar product on Rn and denote 〈·, ·〉D =
〈·, D·〉 .

In applications, the number p of collision invariants is usually relatively small
compared to n (note that formally n = ∞ for the continuous Boltzmann equation
whenas p ≤ 6). Also, the matrix D is diagonal and therefore all its eigenvalues
are known. This explains the importance of the following result by Bobylev and
Bernhoff [10] (see also [4]).

Theorem 2.1. The numbers of positive, negative and zero eigenvalues of D−1L
are given by 

m+ = n+ − k+ − l
m− = n− − k− − l
m0 = p+ l.
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In the proof of Theorem 2.1 a basis

u1, ..., uq, y1, ..., yk, z1, ..., zl, w1, ..., wl

of Rn, such that

yi, zr ∈ N(L), D−1Lwr = zr and D−1Luτ = λτuτ ,

and

〈uτ , uν〉D = λτδτν , with λ1, ..., λm+ > 0 and λm++1, ..., λq < 0,

〈yi, yj〉D = γiδij , with γ1, ..., γk+ > 0 and γk++1, ..., γk < 0,

〈uτ , zr〉D = 〈uτ , wr〉D = 〈uτ , yi〉D = 〈wr, yi〉D = 〈zr, yi〉D = 0,

〈wr, ws〉D = 〈zr, zs〉D = 0 and 〈wr, zs〉D = δrs,

is constructed.

3. Applications to boundary layers. The main results for half-space problems
for single species in [4] and [5] can now be applied in the case of binary mixtures.
For the sake of completeness we present the results here. All proofs are similar to
the ones for single species found in [4] and [5].

We consider the inhomogeneous (or homogeneous if g = 0) linearized problem

D
df

dx
+ Lf = g, (12)

where g = g(x) ∈ L1(R+,Rn), with one of the boundary conditions

(O) the solution tends to zero at infinity, i.e.

f(x)→ 0 as x→∞;

(P) the solution is bounded, i.e.

|f(x)| <∞ for all x ∈ R+;

(Q) the solution can be slowly increasing, i.e.

|f(x)| e−εx → 0 as x→∞, for all ε > 0;

at infinity.
In the case of boundary condition (O) at infinity we additionally assume that

g(x) ∈ N(L)⊥ for all x ∈ R+. (13)

Remark 1. The boundary condition (O) corresponds to the case when we have
made the expansion (8) around a Maxwellian M , such that F → M as x → ∞.
The boundary conditions (P) and (Q) are the boundary conditions in the Milne and
Kramers problem respectively.

We can (without loss of generality) assume that

Dα =
(
D+
α 0

0 −D−α

)
, (14)

where

D+
α = diag

(
ξα,11 , ..., ξα,1

n+
α

)
and D−α = −diag

(
ξα,1
n+
α+1

, ..., ξα,1nα

)
, with

ξα,11 , ..., ξα,1
n+
α
> 0 and ξα,1

n+
α+1

, ..., ξα,1nα < 0. (15)
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We also define the projections R+ : Rn → Rn+
and R− : Rn → Rn− , n− = n− n+,

by

R+s = s+ =
(
s1, ..., sn+

A
, snA+1, ..., snA+n+

B

)
and

R−s = s− =
(
sn+

A+1, ..., snA , snA+n+
B+1, ..., sn

)
for s = (s1, ..., sn).

At x = 0 we assume the general boundary condition

f+(0) = Cf−(0) + h0, (16)

where C is a given n+ × n− matrix and h0 ∈ Rn+
. In applications,

C =
(
CA 0
0 CB

)
,

where Cα are given n+
α × n−α matrices.

We introduce the operator C : Rn → Rn+
, given by

C = R+ − CR−.

In order to be able to obtain existence and uniqueness of solutions of the linearized
half-space problems we will assume that the matrix C fulfills the condition

dim CU+ = m+, with U+ = span (u1, ..., um+) , (17)
as we consider boundary condition (O) at infinity, the condition

dim CX+ = n+, with X+ = span (u1, ..., um+ , y1, ..., yk+ , z1, ..., zl) , (18)

as we consider boundary condition (P) at infinity, and the condition (18) or the
condition

dim CX̃+ = n+, with X̃+ = span (u1, ..., um+ , y1, ..., yk+ , z1 + w1, ..., zl + wl) ,
(19)

as we consider boundary condition (Q) at infinity.

Theorem 3.1. (i) Assume that the conditions (13) and (17) are fulfilled and that

h0, CexD
−1LD−1f(x) ∈ CU+ for all x ∈ R+. (20)

Then the system (12) with the boundary conditions (O) and (16) has a unique so-
lution.

(ii) Assume that the condition (18) is fulfilled. Then the system (12) with the
boundary conditions (P) and (16) has a unique solution with the asymptotic flow

fas =
k∑
i=1

µiyi +
l∑

j=1

ηjzj,

if the k− parameters µk++1, ..., µk are prescribed.
(iii) Assume that the condition (18) is fulfilled. Then the system (12) with the

boundary conditions (Q) and (16) has a unique solution with the asymptotic flow

fas(x) =
k∑
i=1

µiyi +
l∑

j=1

((ηj − xαj) zj + αjwj) , (21)

if the k− + l parameters µk++1, ..., µk and α1, ..., αl are prescribed.
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(iv) Assume that the condition (19) is fulfilled. Then the system (12) with the
boundary conditions (Q) and (16) has a unique solution with the asymptotic flow
(21) if the k−+l parameters µk++1, ..., µk and ϑ1, ..., ϑl, ϑi = ηi+αi, are prescribed.

Especially, for the homogeneous system (12) with g = 0, the condition (20) is
reduced to

h0 ∈ CU+.

Lemma 3.2. Let D+ =
(
D+
A 0

0 D+
B

)
and D− =

(
D−A 0
0 D−B

)
, cf. Eq.(15).

Then
i) the condition (18) is fulfilled, if

CTD+C < D− on R−X+;

ii) the conditions (17) and (19) are fulfilled, if

CTD+C ≤ D− on R−U+ and R−X̃+, respectively.

Corollary 1. If C = 0, then the conditions (17)-(19) are fulfilled.
In particular,

{
u+

1 , ..., u
+
m+ , y

+
1 , ..., y

+
k+ , z

+
1 , ..., z

+
l

}
is a basis of Rn+

.

We consider the non-linear system

D
df

dx
+ Lf = S(f, f), (22)

where the solution tends to zero at infinity. Furthermore, we fix a number σ, such
that

0 < σ ≤ min {|λ| 6= 0; det(λD − L) = 0}
and introduce the norm

|h|σ = sup
x≥0

eσx |h (x)| ,

on X =
{
h ∈ B0[0,∞) | |h|σ <∞

}
.

We have the following existence result.

Theorem 3.3. Let condition (18) be fulfilled and suppose that
〈S (f(x), f(x)) , wj〉 = 0 for j = 1, ..., l, and that 〈h0, h0〉D+ is sufficiently small.
Then with k+ + l conditions on h0, the system (22) with the boundary conditions
(O),(16), has a locally unique solution (with respect to the norm |·|σ).

Remark 2. It was recently proved that one can get rid of the restrictive assump-
tions 〈S (f(x), f(x)) , wj〉 = 0 for j = 1, ..., l, on the quadratic part in the degenerate
cases, in Theorem 3.3, for one-component as well as two-component gases [8], by
a slight modification of the proof of Theorem 3.3, if one instead of condition (18)
assume that

dim CX̂+ = n+, with X̂+ = span (u1, ..., um+ , y1, ..., yk+ , w1, ..., wl) . (23)

Furthermore, the condition (23) is fulfilled, if

CTD+C < D− on R−X̂+,

and, especially,
{
u+

1 , ..., u
+
m+ , y

+
1 , ..., y

+
k+ , w

+
1 , ..., w

+
l

}
is a basis of Rn+

[8].

In the following theorem we present explicit conditions on h0, but then with
restrictive conditions on the quadratic part.
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Theorem 3.4. Let condition (17) be fulfilled and assume that

h0, CexB
−1LD−1S(f(x), f(x)) ∈ CU+ for all x ∈ R+,

with U+ = span(u : Lu = λDu, λ > 0) = span (u1, ..., um+) .

Then there is a positive number δ0, such that if

|h0| ≤ δ0,

then the system (22) with the boundary conditions (O),(16), has a locally unique
solution (with respect to the norm |·|σ).

Remark 3. If condition (17) is fulfilled, then the condition

h0 ∈ CU+

implies that we have k+ + l conditions on h0.

Remark 4. If the conditions
CU− ⊆ CU+, (24)

with U− = span ({u| Lu = λDu, with λ < 0} ∪ {z1, ..., zl})
= span (um++1, ..., uq, z1, ..., zl) ,

and (13) are fulfilled, then

CexD
−1LD−1S(f, f) ∈ CU+ for all x ∈ R+.

Remark 5. All our results for half-space problems can be extended in a natural
way, to yield also for singular matrices D, if

N(L) ∩N(D) = {0} .

4. Applications to shock profiles. We are interested in solutions to the problem

(D − cI)
dFi
dy

= Qi (F, F ) , i = 1, ..., n, c ∈ R, (25)

such that
F →M± as y → ±∞,

where M± are two bi-Maxwellians and D =
(
DA 0
0 DB

)
, with Dα from Eqs.(14)-

(15). Here F = (F1, ..., Fn), with Fi = Fi (y) = F (y, ξi), i = 1, ..., n.
Note that shifting the velocity variable in the continuous Boltzmann equation

doesn’t change the velocity set, while for a finite set of velocities a shift in the
velocity variable changes the set of velocities. However, if we want to end up with
a specific set of velocities after a given shift in the velocity variable, we can always
start with a suitably shifted set of velocities. Note also that changing c in the
discrete case can change the number of positive (and negative) eigenvalues of the
matrix D − cI, and thereby the number of positive (and negative) eigenvalues of
the matrix (D − cI)−1L can change also away from the degenerate values of c.

We denote by {φ1, ..., φp} (p = d + 3 for normal DVMs for binary mixtures) a
basis for the vector space of collision invariants. If we multiply Eq.(25) scalarly by
φi, 1 ≤ i ≤ p, and integrate over R, then we obtain that the bi-Maxwellians M−
and M+ must fulfill the Rankine-Hugoniot conditions

〈M+, φi〉D−cI = 〈M−, φi〉D−cI , i = 1, ..., p.

We make the following assumptions on our DVMs.
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1. There is a number c0 (”speed of sound”), with the following properties:
[i] rank(K) = p− 1, where K is the p× p matrix with the elements

kij = 〈M+φi, φj〉D−c0I .

The rank of K is independent of the choice of the basis {φ1, ..., φp}. In other
words, there is a unique (up to its sign) vector φ⊥ in span(φ1, ..., φp), such
that 〈M+φ⊥, φ⊥〉 = 1 and

〈M+φ⊥, φ〉D−c0I = 0 for all φ ∈ span(φ1, ..., φp). (26)

[ii] c0 6= ξα,1i for i = 1, ..., nα, or, equivalently, det(D − c0I) 6= 0.
2. The vector(s) φ⊥ fulfilling Eqs.(26), also satisfy

〈
M+φ⊥, φ

2
⊥
〉
D−c0I

6= 0. We
choose the sign of the vector φ⊥, such that

〈
M+φ⊥, φ

2
⊥
〉
D−c0I

> 0.

We assume that assumptions 1 and 2 are fulfilled and denote

‖h‖ = ‖h(y)‖ = sup
y∈R
|h(y)|

for any bounded (vector or scalar) function h(y) : R→ Rk, where k is a positive
integer.

Theorem 4.1. For any given positive Maxwellian M+, there exists a family of
Maxwellians M− = M− (ε) and shock speeds c = c (ε) = c0 + ε, such that the shock
wave problem (25) has a non-negative locally unique (with respect to the norm ‖·‖
and up to a shift in the independent variable) non-trivial bounded solution for each
sufficiently small ε > 0. Furthermore, M− is determined by M+ and c.

Remark 6. We can interchange M− and M+ in Theorem 4.1 (with ε < 0).

The proof of Theorem 4.1 is similar to the proof in [9] for the case of one species.

5. ”Speed of sound” for axially symmetric DVMs for mixtures. We assume
that (i) we have two axially symmetric sets of velocities (i.e. if

{
ξα1 , ..., ξ

α
nα

}
∈ Vα,

then also
{
±ξα1 , ...,±ξαnα

}
∈ Vα for all possible combinations of sound); (ii) all

collision invariants are of the form (6); and (iii) we have made an expansion (cf.
Eq.(8)) around a non-drifting bi-Maxwellian M (i.e. with b = 0 in Eqs.(6)-(7)).
Let

D =
(
DA 0
0 DB

)
, with Dα = diag(ξα,11 , ..., ξα,1Nα

,−ξα,11 , ...,−ξα,1Nα
),

and assume that c /∈
{
±ξA,11 , ...,±ξA,1NA

,±ξB,11 , ...,±ξB,1NB

}
. The null-space of L is

given by
N(L) = span (φ0, ..., φd+2) ,

where

φ0 = M1/2 · (1, ..., 1︸ ︷︷ ︸
2NA

, 0, ..., 0︸ ︷︷ ︸
2NB

)

φ1 = M1/2 · (0, ..., 0︸ ︷︷ ︸
2NA

, 1, ..., 1︸ ︷︷ ︸
2NB

)

φ2 = M1/2 · (φA2 , φB2 ), with φα2 = (ξα,11 , ..., ξα,1Nα
,−ξα,11 , ...,−ξα,1Nα

)
φ3 = M1/2 · (φA3 , φB3 ), with φα3 = (|ξα1 |

2
, ...,

∣∣ξαNα ∣∣2 , |ξα1 |2 , ..., ∣∣ξαNα∣∣2)
φ2+i = M1/2 · (φA2+i, φB2+i),with φα2+i = (ξα,i1 , ..., ξα,i2Nα

), i = 2, ..., d

.
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Then,

K =



−cχA1 0 χA2 −cχA3
0 −cχB1 χB2 −cχB3
χA2 χB2 −cχ2 χ4

−cχA3 −cχB3 χ4 −cχ5

−cχ6

. . .
−cχd+4


,

where K = (〈φi+1, φj+1〉D−cI), χ
A
1 = 〈φ0, φ0〉, χA2 = 〈φ0, φ2〉D, χA3 = 〈φ0, φ3〉,

χB1 = 〈φ1, φ1〉, χB2 = 〈φ1, φ2〉D, χB3 = 〈φ1, φ3〉, χ2 = χA2 + χB2 = 〈φ2, φ2〉, χ4 =
〈φ2, φ3〉D and χi+2 = 〈φi, φi〉, i = 3, ..., d+ 2. Hence,

det(K)

= cdχ6...χd+4(c2(χA1 χ
B
1 χ2χ5 − χA1 χ2(χB3 )2 − χB1 χ2(χA3 )2) + (χA2 χ

B
3 − χB2 χA3 )2

+ 2χ4(χA1 χ
B
2 χ

B
3 + χB1 χ

A
2 χ

A
3 )− (χA1 (χB2 )2 + χB1 (χA2 )2)χ5 − χA1 χB1 χ2

4),

and the degenerate values of c (the values of c for which l ≥ 1) are

c0 = 0 and c± = ±

√
X

χ2(χA1 χ
B
1 χ5 − χA1 (χB3 )2 − χB1 (χA3 )2)

, where

X = χA1 χ
B
1 χ

2
4 + (χA1 (χB2 )2 + χB1 (χA2 )2)χ5 − 2χ4(χA1 χ

B
2 χ

B
3 + χB1 χ

A
2 χ

A
3 )

− (χA2 χ
B
3 − χB2 χA3 )2.

Here c+ =

√
X

χ2(χA1 χ
B
1 χ5 − χA1 (χB3 )2 − χB1 (χA3 )2)

corresponds to the speed of sound

in the continuous case.

6. Exact shock profiles for a plane 6+4-velocity model. We now consider
the shock wave problem for a mixture, in which gas A is described by a 6-velocity
model with velocities (±1, 0) and (±1,±2m), and the gas B is described by the
classical Broadwell model [17] in plane with velocities (±m,±m).

Here m =
mA

mB
, where we assume that m > 1. The case m < 1 can be studied

in a similar way. If m = 1, then for this simplified model, the degenerate values
would be c0 = 0 and c± = ±1. Especially, ”the speed of sound” is 1, contradicting
assumption 1[ii] in Section 4. However, in general we don’t have to exclude the case
m = 1.

Note that for the Broadwell model we have only two linearly independent collision
invariants, as the mass vector and the energy vector are linearly dependent, even
if mass, momentum, and energy all are preserved. However, the DVMs for gas
A and the mixture will have the correct number of linearly independent collision
invariants.
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For a flow symmetric around the x1-axis we obtain the reduced system

(1− c) df1
dy

= σ1q1 + σ2q2

− (1 + c)
df2
dy

= −σ1q1 − σ2q2

(1− c) df3
dy

= −σ1q1 + σ3q3

− (1 + c)
df4
dy

= σ1q1 − σ3q3

(m− c) df5
dy

= −σ2q2 − σ3q3

− (m+ c)
df6
dy

= σ2q2 + σ3q3

,

where q1 = f2f3 − f1f4, q2 = f2f5 − f1f6, and q3 = f4f5 − f3f6, or equivalently

(D − cI)
df

dy
= Q (f, f) ,

where D = diag(1,−1, 1,−1,m,−m), f = (f1, f2, f3, f4, f5, f6), and
Q (f, f) = σ1q1(1,−1,−1, 1, 0, 0) + σ2q2(1,−1, 0, 0,−1, 1) + σ3q3(0, 0, 1,−1,−1, 1).

We assume that D − cI is non-singular, i.e. that c /∈ {±1,±m}, and make the
natural assumption σ2 = σ3.

The set of collision invariants are generated by the collision invariants
φ0 = (1, 1, 1, 1, 0, 0)
φ1 = (0, 0, 0, 0, 1, 1)
φ2 = (1,−1, 1,−1, 1,−1)
φ3 = (1, 1, 1 + 4m2, 1 + 4m2, 2m, 2m)

.

The Maxwellians are of the form

M = s(1, a, b, ab, d, ad), with a, b, d, s > 0.

The density, momentum density, and energy density per unit volume are obtained
by

ρ = ρA + ρB , with ρA = mA(f1 + f2 + 2f3 + 2f4) and ρB = 2mB(f5 + f6)
ρu = mA(f1 − f2 + 2f3 − 2f4 + 2f5 − 2f6)

ρe = mA(f1 + f2 + 2(1 + 4m2)(f3 + f4) + 4m(f5 + f6))
.

We consider

(D − cI)
df

dy
= Q (f, f) , where f →M+ as y →∞,

and denote

F = M+ +M
1/2
+ h, with M+ = s+(1, 1, b+, b+, d+, d+) = s(1, 1, b, b, d, d), (27)

where we have assumed that M+ is a non-drifting Maxwellian. We obtain

(D − cI)
dh

dy
+ Lh = S(h, h), where h→ 0 as y →∞, (28)
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with

L = s



l1 −l1 −σ1

√
b σ1

√
b −σ2

√
d σ2

√
d

−l1 l1 σ1

√
b −σ1

√
b σ2

√
d −σ2

√
d

−σ1

√
b σ1

√
b l2 −l2 −σ2

√
bd σ2

√
bd

σ1

√
b −σ1

√
b −l2 l2 σ2

√
bd −σ2

√
bd

−σ2

√
d σ2

√
d −σ2

√
bd σ2

√
bd σ2 (1 + b) −σ2 (1 + b)

σ2

√
d −σ2

√
d σ2

√
bd −σ2

√
bd −σ2 (1 + b) σ2 (1 + b)


,

where l1 = σ1b+ σ2d and l2 = σ1 + σ2d, and

S(h, h) =
√
s(σ1q1(

√
b,−
√
b,−1, 1, 0, 0) + σ2q2(

√
d,−
√
d, 0, 0,−1, 1)

+σ2q3(0, 0,
√
d,−
√
d,−
√
b,
√
b)).

The linearized operator L is symmetric and semi-positive and has the null-space

N(L) = span(y1, y2, y3, ỹ4), with
y1 = (1, 1, 0, 0, 0, 0), y2 = (0, 0, 1, 1, 0, 0),

y3 = (0, 0, 0, 0, 1, 1), and ỹ4 = (1,−1,
√
b,−
√
b,
√
d,−
√
d)

where we for c 6= 0 can replace ỹ4 with

y4 =
(

1 + c, 1− c,
√
b (1 + c) ,

√
b (1− c) ,

√
d (m+ c) ,

√
d (m− c)

)
.

Then we obtain

K =


−2c 0 0 0

0 −2c 0 0
0 0 −2c 0
0 0 0 2c

((
1− c2

)
(1 + b) + d

(
m2 − c2

))
 ,

where K =
(
〈yi, yj〉D−cI

)4

i,j=1
.

We remind that if n±, with n+ + n− = n, and m±, denote the numbers of
the positive and negative eigenvalues of the matrices D − cI and (D − cI)−1

L
respectively, and k+, k−, and l denote the numbers of positive, negative, and zero
eigenvalues of the 4×4 matrix K, then m± = n±−k±− l. We obtain the following
table

c −m c− −1 0 1 c+ m
n+ 6 5 5 5 3 3 1 1 1 0
n− 0 1 1 1 3 3 5 5 5 6
k+ 4 4 3 3 3 1 1 0 0 0
k− 0 0 0 1 1 3 3 3 4 4
l 0 0 1 0 0 0 0 1 0 0
m+ 2 1 1 2 0 2 0 0 1 0
m− 0 1 0 0 2 0 2 1 1 2 , (29)

where c± = ±
√

1 + b+ dm2

1 + b+ d
.

Explicitly, the non-zero eigenvalues of the matrix (D − cI)−1
L are

λ1 =
2sc

1− c2
(σ1(1 + b) + σ2d)

λ2 = 2scσ2

(
1 + b

m2 − c2
+

d

1− c2

) ,
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with the corresponding eigenvectors
u1 = (

√
b

1− c
,

√
b

1 + c
,− 1

1− c
,− 1

1 + c
, 0, 0)

u2 = (

√
d

1− c
,

√
d

1 + c
,

√
bd

1− c
,

√
bd

1 + c
,− 1 + b

m− c
,− 1 + b

m+ c
)

.

Plugging h = νu1 + ηu2 in Eq.(28) and multiplying scalarly by (D − cI)ui, we
obtain the two equations 

dν

dy
+ λ1ν = kην

dη

dy
+ λ2η = kη2

,

with k =
2σ2

√
sdc (1 + b) (m− 1)

(1− c2) (m2 − c2)
. The solutions are


η =

λ2

k + C1eλ2y

ν =
C2e

−λ1y

ke−λ2y + C1
=
C2e

(λ2−λ1)y

k + C1eλ2y

or
{
η = 0
ν = C2e

−λ1y .

The parameter C1 6= 0 reflects the invariance of our equation under shifts in the
invariant variable y. The sign of C1 is, however, defined uniquely. It must be the
same as the sign of k.

Let c+ < c < m or c− < c < −1 + b+ dm

1 + b+ d
. If c+ < c < m, then λ2 > 0 and

λ1 < 0, and hence, lim
y→∞

ν = 0 implies that C2 = 0. If c− < c < −1 + b+ dm

1 + b+ d
, then

λ1 > λ2 > 0, and hence, lim
y→−∞

ν <∞ implies that C2 = 0. Therefore, if η 6= 0,

h(y) =
λ2

k + C1eλ2y
u2.

Moreover,

f(y) = M+ +
λ2

k + C1eλ2y
M

1/2
+ u2

and the other Maxwellian is

M− = M+ +
λ2

k
M

1/2
+ u2 =

s

m− 1
(a1, a2, a1b−, a2b−, a1d−, a2d−),

where a1 = m + c +
d
(
m2 − c2

)
(1 + b) (1− c)

, a2 = m − c +
d
(
m2 − c2

)
(1 + b) (1 + c)

, b− = b, and

d− =

(
c2 − 1

)
(1 + b)

m2 − c2
.

If c− < c < −1 + b+ dm

1 + b+ d
, then λ1 > λ2 > 0, and hence, lim

y→−∞
ν < ∞ implies

that C2 = 0.

Remark 7. We can instead of Eq.(6) consider

(D − cI)
df

dy
= Q (f, f) , where f →M− as y → −∞,
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with
1 + b+ dm2

1 + b+ d
< c < c+ or −m < c < c−, and in a similar way as above, we

obtain

f(y) = M− +
λ2

k + C1eλ2y
M

1/2
− u2

and

M+ = M− +
λ2

k
M

1/2
− u2.

7. Boundary layers for the 6+4-velocity model with a moving wall. Let
c be a real number such that c /∈ {−m,−1, 0, 1,m}. We assume that m > 1. The
cases m < 1 and m = 1 can be studied in a similar way. We define the projections
R+ : R6 → Rn+

, n+ = n+
A + n+

B , and R− : R6 → Rn− , n− = 6− n+, by

R+s = s+ and R−s = s−, where

s+ =



−
s5 if 1 < c < m

(s1, s3, s5) if − 1 < c < 1
(s1, s2, s3, s4, s5) if −m < c < −1
s if c < −m

and

s− =



s if c > m
(s1, s2, s3, s4, s6) if 1 < c < m

(s2, s4, s6) if − 1 < c < 1
s6 if −m < c < −1
−

for s = (s1, s2, s3, s4, s5, s6).
We now consider the problem

∂f

∂t
+D

∂f

∂x
= Q(f, f), x > ct, t > 0,

f+(ct, t) = C̃f−(ct, t) + h̃0

f(x, 0) = f0(x)
f0(x)→M as x→∞

,

where D = (1,−1, 1,−1,m,−m), M = s(1, 1, b, b, d, d), C̃ is a given n+×n− matrix,
and h̃0 ∈ Rn+

.
After the change of variables y = x− ct and the transformation (27) we obtain

∂f

∂t
+ (D − cI)

∂f

∂y
+ Lf = S(f, f), y, t > 0,

f+(0, t) = Cf−(0, t) + h0

f(y, 0) = f0(y)
f0(y)→ 0 as y →∞

,

where D = D0 − cI, C is an n+ × n− matrix, and h0 ∈ Rn+
.

We assume that
∂f(y, t)
∂t

= 0 and consider the non-linear system
(D − cI)

df

dy
+ Lf = S(f, f), f = f(y), y, t > 0,

f+(0) = Cf−(0) + h0

f(y)→ 0 as y →∞

.
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If h0 = 0, then we always have the trivial solution f = 0, and if −1 < c < 0,
1 < c ≤ c+, or m < c, then we have no other solutions, since we have non-positive
eigenvalues, λ1 < 0 and λ2 ≤ 0. If −1 < c < 0, then h0 ∈ R3, and if 1 < c ≤ c+,
then h0 ∈ R. Hence, we have 3, 1, or 0 conditions on h0, if −1 < c < 0, 1 < c ≤ c+,
or m < c, respectively.

If c+ < c < m, then C = (0, 0, 0, 0, cB), h0 ∈ R, and f5 (0) = cBf6 (0) + h0.
Furthermore, λ1 < 0 and λ2 > 0. Therefore, ν = 0. Hence, if h0 6= 0 and cB 6=
m+ c

m− c
, then we obtain the unique solution

f(y) =
λ2

k + C1eλ2y
(

√
d

1− c
,

√
d

1 + c
,

√
bd

1− c
,

√
bd

1 + c
,− 1 + b

m− c
,− 1 + b

m+ c
),

with

C1 =
(1 + b) (m(cB − 1)− c(1 + cB))

h0 (m2 − c2)
λ2 − k.

If 0 < c < 1, then C =

 c1 c2 0
c3 c4 0
0 0 cB

 and h0 ∈ R3. Furthermore, λ1 > 0 and

λ2 > 0. Assume that

cB 6= m+ c

m− c
and dim(span(v1, v2)) = 2, where

v1 = (
1 + c

1− c
√
b− c1

√
b+ c2,−

1 + c

1− c
− c3
√
b+ c4)

v2 = (
1 + c

1− c
− c1 − c2

√
b,

1 + c

1− c
√
b− c3 − c4

√
b)

.

Then we have a unique solution if and only if

h0 ∈ span((v1, 0), (v2, (1 + c) (1 + b)
m(cB − 1)− c(1 + cB)√

d (m2 − c2)
),

which implies 1 condition on h0.

If −m < c < −1, then C =


0
0
0
0
cB

, h0 ∈ R5, and we must have

h0 = (f1 (0) , f2 (0) , f3 (0) , f4 (0) , f5 (0)− cBf6 (0)).

Assume that cB 6=
m+ c

m− c
. If c− < c < −1, then λ1 > 0 and λ2 > 0, which gives us

3 conditions on h0. On the other hand, if −m < c ≤ c−, then λ1 > 0 and λ2 ≤ 0,
and hence we must have

h0 = C2(

√
b

1− c
,

√
b

1 + c
,− 1

1− c
,− 1

1 + c
, 0),

which implies 4 conditions on h0. Then, with h0 = (h01, h02, h03, h04, 0), the unique
solution is

f(y) = h03e
−λ1y(−

√
b,−1− c

1 + c

√
b, 1,

1− c
1 + c

, 0, 0).

If c < −m, then h0 ∈ R6, and we must have h0 = f(0). Furthermore, λ1 > 0
and λ2 > 0. Hence, h0 ∈ span(u1, u2), which implies 4 conditions on h0.
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We see that the number of conditions on h0, in fact, equals k+ + l, where k+ and
l can be found in table 29.
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