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ARTICLE INFO ABSTRACT

Keywords: Tracking quintessence, in a spatially flat and isotropic space-time with a minimally coupled canonical scalar
Cosmology field and an asymptotically inverse power-law potential V(¢) < ¢, p > 0, as ¢ — 0, is investigated. This is
STalzr field done by introducing a new three-dimensional regular dynamical system, which enables a rigorous explanation
Fluids

of the tracking feature: (1) The dynamical system has a tracker fixed point T with a two-dimensional stable
manifold that pushes an open set of nearby solutions toward a single tracker solution originating from T. (2)
All solutions, including the tracker solution and the solutions that track/shadow it, end at a common future
attractor fixed point that depends on the potential. Thus, the open set of solutions that shadow the tracker
solution share its properties during the tracking quintessence epoch. We also discuss similarities and differences
of underlying mechanisms for tracking, thawing and scaling freezing quintessence, and, moreover, we illustrate
with state space pictures that all of these types of quintessence exist simultaneously for certain potentials.

Dynamical systems

1. Introduction p > 0, as ¢ — 0, the quintessence governing equations have a special
solution they called a tracker solution since it attracts solutions that
then track/shadow it for a wide range of initial conditions. A second

property the tracker solution exhibit is that the scalar field equation of

In 1998 observations of type Ila supernovae indicated that the
Universe is presently accelerating [8,9]. Within the framework of Gen-

eral Relativity this cosmic acceleration implies that there exists an
exotic energy component in the Universe, called dark energy, with
an equation of state parameter satisfying wpg < —1/3. The simplest
candidate for dark energy, apart from a cosmological constant, is a
dynamical canonical scalar field ¢, minimally coupled to gravity and
with a potential V(¢), referred to as quintessence, Caldwell et al.
(1998) [10] (for reviews and references about quintessence, see e.g.
Tsujikawa (2013) [11] and Bahamonde et al. (2018) [12]). At the
present time the energy density of quintessence and matter are roughly
of the same size (2, ~07, 2, ~03) which raises the need to explain
this near coincidence without specifying precise initial conditions. To
address this difficulty Zlatev et al. (1999) [13], and Steinhardt et al.
(1999) [4] showed that for potentials with the property V(p) < @77,

* Corresponding author.

state parameter w, is nearly constant in the matter-dominated epoch
and less than w,,, the equation of state parameter of the background
matter. This implies that the energy density p,, decreases faster than
p, so that as the universe evolves from matter-domination p, will
catch up and overtake p,,. Taken together these two properties go some
way toward solving the coincidence problem. This type of evolution is
referred to as tracking quintessence.!

In this paper we give a description of tracking quintessence by
means of a new regular dynamical systems framework that is valid
for asymptotically inverse power-law potentials, V() « ¢ 7, p > 0,
as ¢ — 0.2 We use our new regular dynamical systems framework to
show that there exists a unique tracker solution with the properties of
the heuristically defined tracker solution of Steinhardt and co-workers,

E-mail addresses: aalho@math.ist.utl.pt (A. Alho), claes.uggla@kau.se (C. Uggla), jwainwri@uwaterloo.ca (J. Wainwright).

1 We note that prior to the development of the concept of tracker quintessence Peebles and Ratra (1988) [1,2] studied scalar field cosmologies with matter
and showed that for the inverse power-law potential when p, < p,, one obtains p,/p,, ~ e8/C+nN " which shows that p,, decreases more slowly than p,, as the
universe expands and will eventually become dominant. This is consistent with the ‘tracker’ expression w, := p,/p, = =2/(2 + p), first derived by Ratra and
Quillen (1992) [3], Eq. (5), and then by Steinhardt et al. (1999) [4] for the inverse power-law potential, see also Podario and Ratra (2000) [5] and Peebles and
Ratra (2003) [6].

2 This paper complements our recent paper Alho, Uggla and Wainwright (2023) [7] which deals with potentials for which A(@) = -V,/V is bounded and
@ € (-0, ), referred to as AUW [7]. This is in contrast both physically and mathematically to the present asymptotically inverse power-law potentials, which
yield an extremely steep potential wall when ¢ — 0, resulting in ¢ € (0, ) instead of ¢ € (-0, ).
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originating from a new hyperbolic tracker fixed point. The fact that all the
eigenvalues of this isolated fixed point have non-zero real parts makes
it possible to (i) explain the tracking feature and (ii) obtain analytic
approximate expressions for tracker solutions. Moreover, the global
and regular structure of the state space shows explicitly (a) the entire
tracker solution and gives insight into the possible initial conditions
which lead to solutions that approach the tracker fixed point and then
track/shadow the tracker solution; (b) that these models also give rise
to thawing quintessence solutions, and that some potentials belonging
to the present class simultaneously in addition give rise to co-existing
scaling freezing quintessence solutions.

The outline of the paper is as follows. In the next section we derive
the new regular dynamical system. In Section 3 we briefly review the
tracker conditions of Steinhardt and co-workers [4,13] and describe the
general structure of the new state space, including the fixed points of
the dynamical system that determine the intermediate and late time
behavior of the quintessence solutions. In Section 4 we give a general
dynamical systems description of thawing, scaling freezing and tracking
quintessence, focussing on the latter, and in Section 5 we give specific
examples that illustrate the previous general discussion using three-
dimensional state space figures and graphs of w,,. Finally, there is a
brief concluding Section 6.

2. A regular dynamical system for unbounded A

Consider a spatially flat and isotropic Robertson-Walker spacetime
with a source that consists of matter with an energy density p,, > 0 and
pressure p,, = 0, which represents cold dark matter,> and a minimally
coupled canonical scalar field, ¢, with a potential V(¢) > 0, which
results in the following energy density and pressure

1. 1.
Po =50 +V@),  py=50"—V(®) (€]

where an overdot represents the derivative with proper time . For
these models, the Raychaudhuri equation, the Friedmann equation, the
non-linear Klein-Gordon equation, and the energy conservation law for
matter with zero pressure, can be written as*

H+H?= —%(p +3p), (2a)
3H? =, (2b)
p=-3H¢p-V,, (20)

pm = _3Hpm’ (Zd)

where the Hubble variable is defined by H = d/a, and the total energy
density p and pressure p are given by

P=PptPms  P=Dy 3

Our dynamical system is based on three key quantities associated
with the scalar field: the scalar field equation of state parameter
w, = p,/p,, the Hubble-normalized energy density £, and scalar field

potential £,:

Py + P 2
l+w, = L v (p_’ provided that Q,>0, (4a)
Po 32,
14 1
‘Q(p = 3% = g(p,z +‘QV’ (4b)
|4 1
Qy =55 =50 -0 2, (40)

3 This simple model is useful for describing the transition from an epoch of
matter-domination to an epoch in which the scalar field is dominant. A more
realistic model requires a two component source with matter and radiation
leading to a four-dimensional state space, as described in [14].

4 We use units such that ¢ = 1 and 8zG = 1, where ¢ is the speed of light
and G is the gravitational constant.
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where a ’ denotes the derivative with respect to e-fold time, N :=
In(a/ay), where a is the cosmological scale factor and a, = a(ty) is its
value at the present time, given by N = 0. It follows from (1) and (4)
and the assumed positivity of V' that

1+w, >0, 1—w,>0. 5)

When using Egs. (2) we will convert from proper time ¢ to e-fold
time N using

0, =Hoy, 0F=H0% —(1+qayl. (6
where the deceleration parameter q is defined by
. H

In particular (2¢) assumes the form
?" + 2= 9¢ -3Up)2y =0, ®
where A(¢) is defined by

14
Ai=—=2 9

7 )
We also need the Hubble-normalized matter density ©,, and its evolu-
tion equation, given by

-:p_m=1__Q

m = 32 o Q=2 Dy, (10)

as follows from (7) and (2d). The deceleration parameter g can be
expressed as

1+q=%(l+w¢(2¢), (11)

as follows from (7) in conjunction with (1), (2) and (3).
Eq. (4a), which can be written as

ne _
() =302, +w,), (12)
relates ¢’ to Q, and w,,, which satisfy the differential equations®

Q= =3w,(1 - 2,)0 (13a)

»
wl, = =301 = w,) (14w, - %ﬁ((p)(p’) . (13b)

As in AUW [7], since 1 + w,
according to

» = 0 we can replace w, by a variable u

w =1+ w,, 14

with the stipulation that u has the same sign as ¢'. It follows from (12)
that

¢ = 3Q,u, (15)

which leads to that (13b) takes the form
W= %(2 ) (o1 /2,/3-u). (16)

In this paper we consider positive asymptotically inverse power-law
potentials for which 4 has the following divergence as ¢ — 0:

lim @4 = p, (17a)
@—0

with p > 0 where A(p) is subsequently assumed to be bounded with a
finite limit as ¢ — oo,

lim A=4,.

Pp—0

(17b)

Next we replace the unbounded scalar field variable ¢ € [0, c0)
by a bounded variable ¢ € [0,1]. We do this by choosing a regular,
increasing (and hence invertible) function @(¢) with ¢ € [0, ). The

5 Eq. (13a) follows from (10) and (7); equation (13b) is obtained by
differentiating (12) and using (13a) and (8).
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choice of @(¢) is guided by the form of A(¢), but is required to satisfy
the following conditions:

a0=0, 92| _pso lim @(p) =1, lim (d—"’> =0.
p—0

i
deo =0 w=o0 \do
1s)

We will regard the derivative d@/d ¢ as a function of » which we denote
by F(@):

F(p) := Z—Z, with F()=b, F(1)=0, 19

where the two equalities follow from (18). Hence (15) assumes the form

@' = \/32,uF(@). (20)

We now come to the main new ingredient in our new dynamical
systems formulation where we use the growth condition (17a) to reg-
ularize Egs. (16) and (20). It follows from (17a) that® limg,_o(@A(®)) =
pb, where, with a slight abuse of notation, A(®) = A(¢(®)). This makes
it possible to define a regular function G(p) according to

G(@) :=p M), for 0<p<1, GO)=pb, (21a)
while (17b) and (18) leads to Mgt = A4 and hence that
G() = A,. (21b)

We then use (21a) to replace A by G in (16), which suggests that we
define a new positive variable v by writing

Q,= 307 @2, vi= =1 =2, (22)
After substituting the above expression for Q, in (16) and (20) we
obtain regular equations for ' and @’. The final step is to differen-
tiate (22) and use (13a) and (20) to calculate /. On collecting the
results, the regular system of equations for the state vector (@, u, v) has
the following form:

@' =3uvpF(p), (23a)
u = %(2 — ®)0G(P) — u), (23b)
v = % [(1 =) = 30%3%) - 2uvF ()] v, (230)

where F(p) and G(¢p) are defined by (19) and (21a).

We conclude this section by noticing that tracking quintessence was
discovered in connection with the inverse power-law potential V o« ¢7,
p > 0. To treat these models in the present dynamical systems setting
we can follow [15] and define ¢ as

_ 4

= — 24
? =17 ” 24
which results in a regular dynamical system with
F=(1-¢%,  G=p(l-9), (25)
from which it follows that F(0) = 1, and thereby b = 1, G(0) = p,
G(1)=0.
3. Tracker conditions and general dynamical systems features

3.1. Tracker conditions

Steinhardt and co-workers [4,13] introduced the concept of tracking
quintessence, which entailed that a wide range of initial conditions result
in solutions that are attracted to a special solution called the tracker

6 Use lim,_(@/ ) = b, which follows from the second equation in (18).
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solution. The analysis in Steinhardt et al. [4] uses the scalars 4 and T,
defined by:

[ @ 4%
Ai=adq)—2—, ri=—22-1+u" 26
31+ w,,) V2 @40 (26)

(for 4, see Eq. (9) in [4]). The definition of A results in that the

evolution equation for w,, can be written in the form

wl = =3(1 - wi)(l —4), 27)
while if w;, =0 and 1+ w,, > 0 then’

_ (W, — wy)(1 = 2,)

[‘_
2(1 +wq,)

(28)
In the approach of Steinhart et al. [4] tracking quintessence is
described by the conditions

A~1 and I'-1>0. (29)

Heuristically, the first condition implies that w,, is nearly constant, and
hence that (28) holds approximately, which, due to the second tracker
condition, I' — 1 > 0, suggests that W, < Wy, where w,, = 0 in the
present paper results in w, < 0. This condition is in turn important
since it implies that, as long as the conditions hold, _Q;J > 0 according
to (13a) so that @, increases as the universe ages. Finally, the second
condition, I' — 1 = (ﬂ‘l),(ﬂ > 0, corresponds to that A is monotonically
decreasing. In terms of our state space variables the scalar 4 becomes

4= 1@ (2) = 6@ (2). (30)
3.2. State space features

Recall that the dynamical system (23) asymptotically depends on
the three parameters b = F(0), 4, = G(1) and p via G(0) = pb, where b
is associated with the bounded scalar field variable @, while 4, and p
characterize the asymptotic properties of the scalar field potential V ().
The state space of the system (23) is described by the bounded variables
pel0,1,ue[- \/5 \/5], and the unbounded variable v € [0, o). There
are six invariant boundary sets:

u=+V2,  0v=0, ov=-—. (1)

V3o
Thinking of (¢,u,v) as Cartesian coordinates the state space can be
visualized as a three-dimensional solid, with rectangular base v = 0,
vertical sides u = i\/i, and vertical ends @ = 0, 1. The solid is bounded
above by the curved ‘ski-slope surface’ v = 1/ \/5@, 0 < @ <1, with
v - oo as @ —» 0. We will refer to this three-dimensional solid as the
‘ski-slope state space’.

The relation (22), Q, = 302@?, provides a physical interpretation
of some of the boundary sets. First, on the sets v = 0 and ¢ = 0 we
have 2, = 0, and hence ©Q,, = 1. Thus the subset on which the matter
is dominant (£2,, = 1) is the union of the boundary sets v = 0 and
@ = 0. Second, the ski-slope surface v = 1 /\/5@ is the boundary set on
which the scalar field is dominant, since Q, = 1. To continue, it follows

9=0, =1,

from (14) that the sets u = +V/2 are characterized by w,, = | and hence,
as follows from (4c), £, = 0. Finally, recall that A has a constant value
A, on the invariant set @ = 1, which is therefore referred to as the
exponential potential boundary set.

We note that there is a mathematical common ground between the
present paper and AUW [7]. In particular, the boundary sets v = 0, on
which @ = constant, and @ = 1 are identical to the same boundary sets in

7 See equation (33) in Rubano et al. (2004) [16].
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FLY*

(a) The ski-slope state space with the six
boundary sets in (31). Depicted are also so-
lution trajectories on the v = 0 subset with
¢ = constant, which are independent of the
potential, as are the solution trajectories on
the u = 4++/2 boundaries.
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FL- ! FLo ) FL.

(b) The solution space structure on the
@ = 0 boundary, where there are no bifur-
cations as b > 0 and p > 0 change. The
dashed curves show where v/ = 0; v is
increasing (decreasing) between (outside)
the two v/ = 0 curves. On this boundary
the fixed point B is a source while T is a
sink.

Fig. 1. The ski-slope state space and the @ = 0 boundary. The dotted lines correspond to a cut off in v in order to obtain a finite figure, since v — co when @ — 0, which also

results in a cut off for small ¢ on the scalar field dominant boundary vp =1 /\/5.

AUW [71.% The solution space structures on the exponential boundary
arising from different values of A, were dealt with in detail in AUW
and in [17], and we will therefore not discuss them in this paper. Fig. 1
illustrates some key features of the ski-slope state space; note that the
solution space structure on the boundaries v = 0 and u = +v/2 is
independent of 4 and thereby on the potential.

Since the scalar field potential is not exponential, the scalar field
contributes a source that is not scale-invariant. From this it follows
that the Hubble scalar H is a function of the state vector (@, u,v). By
using (4c) in conjunction with (14) and (22) we obtain

v w2V

3H>= — = = ,
Q (1-w,)2, 32-)p?

(32)
where

BH* =-2(1+¢)GBH?) =-3(1+w,R,)3H?) = =3[1 + 3’ - Dv*3*|(3H?),
(33)

as follows from the definitions of the new variables and (11). In the
interior state space, where Q, <1 and -1 < w, < 1,it follows that
14¢ > 0 and hence that 3 H?(u, v, ) is monotonically decreasing. Thus,
there are no periodic orbits (i.e. solution trajectories) or fixed points
in the interior state space and hence all fixed points of the dynamical
system (23) lie on the boundary of the ski-slope state space, given
by (31) (in addition, an asymptotic analysis shows that there are no
interior orbits that end at » = 0 and v = +0).

8 This can be seen by comparing the current system (23) with the corre-
sponding system given by equations (20) in AUW [7], but note that the domain
of @ (and ¢) is different. Although u is the same in AUW as here, this is not
the case with v. Since v in AUW [7] is given by o(AUW) = 1/Q,/3 it follows
that the present v and v(AUW) are related by v = v(AUW)/@. Thus v = v(AUW)
when @ = 1, but note that it is the factor @~! in v = v(AUW)/p — v(AUW)/@
when ¢ — 0 that regularizes the present dynamical system at ¢ = 0, which
enables our results concerning the tracker solution.

3.3. Fixed points of the dynamical system

Some of the fixed points of the dynamical system (23) depend on
4 and thereby on the positive potential. Although not necessary, apart
from the asymptotic condition (17a) we, for simplicity, assume that the
potentials also satisfy the second condition (17b) and that the potentials
are

(i) monotonically decreasing, i.e. V,, < 0 and hence A(p) > 0, or

(ii) have a single positive minimum, i.e. there exists a positive finite
¢ = @, such that Volp=g, = 0 and V, > 0 and hence
A @) =0, Ayl pegy < 0.0

P | P=p0

The matter dominant boundary v =0

It follows from (23) that the boundary set v = 0 is independent
of A and thereby also on the potential and that v = 0 contains three
Friedmann-Lemaitre lines of fixed points:

FL;*:  (@u,0) = ($,,0,0), (34a)
FLY : (@.u0) = (@,.£V2,0), (34b)
where the constant ¢, satisfies 0 < @, < 1. Note that w, = —1 on
FLJ* while w, = 1 on FL{*. These fixed points correspond to the

fixed points with the same labels in AUW [7] (see equations (24)). The
lines of fixed points are connected by heteroclinic orbits (a heteroclinic
orbit is a solution trajectory that connects two different fixed points)
FLY* — FL{* that are straight lines with ‘frozen’ scalar field values
@ = @, = constant. The orbit structure on the boundary v = 0 is shown
in Fig. 1(a).

9 Incidentally, as far as we know, asymptotically inverse power-law po-
tentials with a positive minimum have not been investigated before in the
literature.
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The matter dominant boundary @ =0
The boundary set ¢ = 0 reflects the unboundedness of 4, and this
gives rise to new fixed points with v > 0, as follows from (23):

. (s 1 [ P

T: (p,u,v)=ug (O’l’p_b>’ up = m, (35a)
C (@ - L

B: (puv)= \/5(0, 1’4b)’ (35b)

where b = F(0) > 0 is the constant defined in (19). On the boundary set
@ = 0, a local analysis shows that the fixed point T is a spiral sink,'®
B is a source (although B is a saddle in the full state space) and the
three FL fixed points with v = 0 are saddles. We conjecture that all
interior orbits in the boundary set @ = 0 are attracted to T. Although
the details of the orbit structure on @ = 0 depend on the parameters p
and b, there are no bifurcations as the parameters change and thus the
qualitative orbit structure on @ = 0 is independent of the potential; a
representative description is shown in Fig. 1(b) using the values b = 1
and p =3.

The exponential boundary o = 1

We have already noted that this boundary set coincides with the
boundary set @ = 1 in AUW [7]. We briefly summarize the fixed points:
apart from the @ = 1 boundary end points of the matter-dominated FL
lines of fixed points with v = 0 there are additional fixed points on the
exponential @ = 1 boundary: the scalar field dominated ‘kinaton’ fixed
points K, , the de Sitter fixed point dS (when 4, = 0), the power-law
fixed point P (when 0 < [1,]| < \/6), and the scaling fixed point S
(when [4,] > \/5). The values of u and v for the fixed points on the
@ = 1 boundary are:

. - L
K,: @ov)= <i\/§, \/5>, (36a)
. (o L _
dS: ()= <O, \/§> s A, =0, (36b)
P ()= \/%(/h, . 0<|il<Ve, (36¢)
St W)= (Sgn(/1+), ﬁ) 14,1 > V3. (36d)

Details and figures depicting the orbit structures for the different cases
associated with 4, = 0, 0 < [4,] < V3, V3 < |A,] < V6, V6 < |4,]
on the exponential boundary @ = 1 are given in AUW [7] while global
results were proven in [17]. For monotonically decreasing potentials P
is a sink (as is dS with ¢ = —1 when 4, = 0); since ¢ = -1 +Ai/2 at P it
follows that 4, < \/5 results in future eternal acceleration, which we,
for simplicity, henceforth assume when the potential is monotonically
decreasing.

The scalar field dominant boundary vp =1/ \/5

For monotonically decreasing scalar field potentials with i(¢) > 0
and0< 4, < \/5, the function 3H? in (33) is also a monotonic function
on the interior of this boundary, although the evolution of 3H? goes
through an inflection point for orbits when and if they pass through
u = 0, which they only can do once since «’|,_, > 0, and hence there
are no periodic orbits or fixed points in the interior of the scalar field
dominant boundary in this case.

Let us now turn to the case of a scalar field potential with a positive
minimum. Apart from the previous fixed points, the minimum results
in an additional fixed point given by

ds: (@,u,u)=<¢0,o,\/£—¢>, 37)
3 @0

10 The eigenvalues associated with T on the boundary @ = 0 are rather

complicated but can conveniently be described as follows: 4,+4, = —2 (ﬂ ) -

2 \ p+2
Burb, Ay = 2(p+4)urh.
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where A(@,) = 0, @y € (0,1), at the minimum of the potential.
Since Aolo=ay = —(wa/V)|¢=¢0 it follows that Aolo=a, <0 yields a
positive minimum of the potential, and when this is the case, which
we assume, the eigenvalues associated with dS° have negative real parts
and therefore dS° is then a sink,'! which is a spiral on the scalar field
dominant boundary if 4 ,|;—;, < —3/4. When _\/E < A, <0 the fixed
point P exists, with one orbit originating from it (P is replaced with dS
if 2, = 0) on the scalar field dominant boundary, but this fixed point
leaves the state space when 4, = —\/6, which results in that all orbits
on the scalar field dominant boundary (apart from the fixed point dS%)
originate from an asymptotic cycle of boundary orbits and the limit
v — +oo where u is monotonically increasing when A, < —\/3, see
Fig. 2.12

We conclude this section by first summarizing the values of , and
w,, at the fixed points:

1. 0 i -4
Q,=1: P.ds.ds" K, with  w, =% -1,-1,-11,
(38a)
_n. ®v Ty P ; - 2
.Q(p—(). FLO ,FLi ,T,B with ww——l,l,—m,l,
(38b)
Q,= % . S with w, =0. (38¢c)

As follows from (11), the deceleration parameter is given by ¢ = (1 +
3w,£,)/2 and can be read off from the above values.

Finally, we notice that for the class of potentials under consideration
the behavior at late times of future accelerating models (¢ < 0) is of
three possible types:

(i) Monotonically decreasing potentials: if 0 < 4, < \/5 then the
2 2
fixed point P is the sink, with w, = %* —land g= %* - 1.
(ii) Monotonically decreasing potentials: if A, = 0 then the fixed point
dS is the sink, with w, = —1 and ¢ = 1.
(iii) Potentials with a positive minimum: the fixed point ds? is the
sink, with w, = —1 and ¢ = —1.

We conjecture, supported by heuristical arguments and numerical ex-
periments, that in each case the sink is the future global attractor,
denoted by .4, which thereby attracts all interior orbits, including those
relevant for quintessence.

4. Quintessence

In this section we use the new dynamical system to describe and
compare thawing, scaling freezing and tracking quintessence.

4.1. Observationally viable quintessence models

The first step is to identify which orbits in the ski-slope state space
(®,u,v) that describe observationally viable quintessence models. We
begin with two necessary conditions:

11 The eigenvalues of the fixed point ds’ are

-(3/2) (1 +4/1 +(4/3)A‘¢|¢:¢0>, -3, where the eigenvectors of the first pair

are tangential to the scalar field dominant boundary while the eigenvector
connected with the eigenvalue —3 corresponds to the ACDM orbit associated
with the positive minimum of the scalar field potential V.

12 Heuristically the situation is quite similar to when A is bounded and
lim,,_ 4 =4 2 \/5, lim, 4 =1, < —\/5, as discussed in AUW [7];
in both cases the ‘scalar field particle’ is increasing its energy toward the
past since there is friction toward the future, and in both cases the scalar
field particle bounces infinitely many times between two steep potential walls
toward the past, where the present potential wall at ¢ = 0 is even steeper than
the potential wall in AUW [7] corresponding to A_ > \/E It is therefore not
surprising that in appropriate variables one can describe this phenomenon as
a heteroclinic limit cycle, i.e a cyclic chain of heteroclinic orbits.
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T K.
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Fig. 2. The orbit structure on the scalar field dominant boundary vp =1/ \/5 projected onto (p,u) with 0 < @ < 1 on the horizontal axis and u € [—\6, \6] on the vertical axis for
the cases 7\6 <A, <0Oand A, < 7\/3, respectively. These two cases are illustrated by the models given in Eq. (39) with p=1/2, v =2 and the two values « = -1 and « = -10,
which result in A, = -1 and 4, = —10, respectively, since A, = pva for these models. The dotted line corresponds to the cut off in @ on the scalar field dominant boundary in

Fig. 1.

» The model must be accelerating at present and late times, i.e. g < 0,
where ¢ is given by (11).

* The model must have an early long matter-dominated epoch (2, S
0.03 for AN ~ 10, see AUW [17]) and satisfy Q, ~ 0.68 at the
present time N = 0.

First we identify the orbits in the state space that begin at matter-
dominated fixed points and then end at the future attractor .4. Then
we regard these unstable manifolds as reference orbits in the sense
that initial data sufficiently close to a fixed point of a viable reference orbit
also provide viable quintessence models. Referring to (38) we see that the
relevant fixed points are FLg* with 0 < @, < 1, T, and also S if the
potential has a positive minimum and 1, <« —1. For a given potential
belonging to the present class of potentials with unbounded A(¢) there
are thereby three possibilities for reference orbits for generating viable
quintessence models, which we denote symbolically as follows:

(i) a one parameter family of reference orbits FL‘(f* - A with 0 <
@, <1,
(i) a single reference orbit S - A = dS? when 4 L <1,
(iii) a single reference orbit T — A,

where the future attractor A for monotonically decreasing potentials is
given by dS, P when 4, =0, 0 < 4, < V/2, respectively, while A = ds®
when the potential has a positive minimum. The reference orbits in all
three cases are the unstable manifolds of the fixed points from which
they originate. As we will see, the three sets of fixed points FL**, S
and T have stable manifolds that push nearby orbits (corresponding to
open sets of initial data near the fixed points) to the unstable manifold
orbits which they subsequently shadow until they all end at the future
attractor A. Next we discuss the three cases, which correspond to
thawing, scaling freezing and tracking quintessence, respectively, in
more detail.

Thawing quintessence

In case (i) each fixed point of FLK* has one eigenvalue that is zero
(corresponding to the line of fixed points), one that is positive, which
yields one reference orbit FLg* — A for each fixed point of FLO(”* (the
unstable manifold of FLg*), and one negative eigenvalue corresponding
to the stable manifold v = 0 of FLg* on which ¢ is constant/‘frozen’,
shown in Fig. 1. The condition of a long matter-dominated epoch is
very restrictive and leads to initial data with 0 < v < 1, which result

in open sets of orbits that are attracted/pushed toward to the unstable
manifold reference orbits of FL(‘;’*, which they subsequently very closely
shadow, until they all end at the future attractor A. Note further that
the eqqation of state for the reference orbits starts at w, ~—1 (wq, =-1
at FLg*) and then increases, which identify the reference orbits (and
the orbits that shadow them) as thawing quintessence solutions.'> We
discussed and elaborated on this type of quintessence in a dynamical
systems setting for potentials with bounded A in AUW [7] and notice
that the situation for thawing quintessence is quite similar in the
present case with unbounded 4.

Scaling freezing quintessence

Case (ii) occurs for a potential with a positive minimum. A matter-
dominated scaling epoch for such potentials, where p,, approximately
scales in time as p,,, only holds for an open set of interior initial
data sufficiently close to the fixed point S. Moreover, since matter-
dominance requires £, < 0.03 = v < 0.1 and since v|g = 1/]A,] it
follows that matter-dominated scaling orbits require 4, < —10. The
fixed point S has two negative eigenvalues with the boundary ¢ = 1
as the stable manifold on which S attracts all orbits, and one positive
eigenvalue, which makes S a saddle point in the full state space, where
the reference orbit S — dS° is the unstable manifold associated with the
positive eigenvalue. The open set of interior matter-dominated scaling
initial data sufficiently close to S first approach S and then the reference
orbit, which they then shadow, and then they all finally end at dS°. Due
to that these orbits, and the reference orbit, exhibit the scaling property
during the matter-dominated epoch near S where w,
and since w, = -1 at ds®, these orbits correspond to scaling freezing
quintessence solutions, see e.g. Tsujikawa (2013) [11].

~ w, = 0,

Tracking quintessence

In this paper we focus on case (iii). The fixed point T has two eigen-
values with negative real parts with the matter dominant boundary
@ = 0 as its stable manifold on which T attracts all orbits and one
positive eigenvalue, making T a saddle point in the full state space
where the positive eigenvalue yields the unstable manifold reference
orbit T — A.

13 See, for example Chiba et al. (2013) [18], the introduction.
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Since, according to (30), 4 = @A(p) v/u = G(®)v/u where G(0) = pb,
up = pbur, it follows that 4 = 1 at the fixed point T, i.e. the first tracker
condition is exactly fulfilled at T. Since we can write 2 = (p/¢)f(¢),
where f is regular and satisfies f(0) = 1 due to the boundedness
condition (17a) and since I' = 1 — A’w/ﬂ it follows that I'—=1=1/p> 1
when ¢ — 0 and hence at T, while w,, |1 = u% -1=-2/2+p)<0and
thus the second tracker condition is also fulfilled at T. We therefore
refer to T as the tracker fixed point and the unstable manifold reference
orbit of T as the tracker orbit. When w,(N) is nearly constant, which
is true near T,' the graph of w,(N) has a horizontal plateau w, ~
—2/(2 + p), as illustrated in the graphs of w,(N) in Section 5.

If @ is sufficiently close to the matter dominant boundary @ = 0
this results in an open set of initial conditions that yields orbits with
a long matter-dominated epoch where they (a) shadow the orbits on
@ = 0, see Fig. 1(b), (b) then approach and spiral around T, where they
still are matter-dominated but where being close to T also implies that
the orbits approximately obey the tracker conditions,'® (c) and where
they subsequently track/shadow the tracker orbit until they all end at
the future attractor 4. Steinhardt et al. (1999) [4] characterize the
open set of orbits that track/shadow the tracker orbit as undershooting
and overshooting orbits. In terms of our state space description this
characterization is based on solutions with initial data close to @ = 0
with u $ 0, 0 $ v < vy (undershooting solutions), and u > 0, v > vy
(overshooting solutions). We will give specific examples in Section 5.

In this way, to quote Steinhardt et al. (1999) [4] (see the introduc-
tion), who dealt with monotonically decreasing potentials for which
A, =0, primarily the inverse power-law potential: “a very wide range
of initial conditions rapidly converge to a common, cosmic evolutionary
track”. However, it is worth noticing that for monotonically decreasing
potentials with A = dS the fixed point dS has an eigenvalue that is zero
with a stable interior state space center manifold direction, and two
eigenvalues with negative real parts with the boundary @ = 1 as their
associated stable manifold. As a consequence all orbits are strongly
attracted to the center manifold of dS, which means that they all ‘track’
each other, including tracking/shadowing the tracker orbit.

Finally, we comment on the dynamical systems approach by Baha-
monde et al. (2018) used in [12] to study tracking quintessence for
the inverse power-law potential. To do so they introduced variables
that result in a non-regular system that breaks down when ¢ — 0
(when their variable z is one, see their eqs. 4.37-4.38). They then
regularize their equations by changing the time variable to obtain
the system 4.40-4.42. However, this hides that the new time variable
asymptotically breaks down when ¢ — 0 and that their variables
deform and crush our regular dynamical system at ¢ = 0. This results in
half circles at z = 1 and a fixed point at the intersection of two lines of
fixed points at x = 0 on the line of fixed points B,, see Figure 9 in [12].
The eigenvalues at this fixed point are all zero, see Table 7 in [12]. The
authors then perform a numerical investigation that suggests that the
tracker orbit originates from the fixed point x =0 on B,.

In contrast to our regularized dynamical system with a time variable
that does not break down when ¢ — 0, the variables and dynamical
system 4.40-4.42 in [12] cannot be used to: (1) explain the tracking
attractor feature, which our variables show is due to that @ = 0 is the
stable manifold of T, (2) nor can the dynamical system 4.40-4.42 be
used to obtain analytic approximations for the tracker orbit since all
eigenvalues are zero at x = 0 on B,, while we will use the unstable
manifold corresponding to the positive eigenvalue at T to obtain simple
and accurate approximations for tracker orbits for a wide range of
potentials in a future follow up paper.

14 As we will see in Section 5, there is a special class of models for which
w,, = constant holds for the entire tracker orbit, but this is a very special class
of models.

15 Note, however, that the scalar field effectively is a test field not affecting
the space-time geometry during matter-dominance.
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4.2. Thawing, scaling freezing and tracking quintessence

We conclude this section with some further comments on thaw-
ing, scaling freezing and tracking quintessence for a potential with
unbounded A. We first note that there is a close mathematical relation-
ship between the present models with unbounded A(¢) and tracking
quintessence and models with bounded A(p) that have a very large
A_ and thereby admit scaling quintessence associated with ¢ — —c.
The two cases have a fixed point T and S, respectively, with stable
manifolds on a boundary associated with their respective scalar field
limits, and both have a single reference orbit as their unstable manifold
that attracts an open set of orbits that come close to the fixed point; cf.
AUW [7] with the present paper, especially the illustrative figures in
AUW and in the next section. However, recall that Q, = 3/ /li, 1 <Al
and hence 0 < Q, < 1 at S for scaling freezing quintessence while
Q,=0 for tracking (and thawing) quintessence at T (and FL%+).

We finally comment on the distinction between tracking, scaling
freezing and thawing quintessence, which is not as clear cut as it first
appears. We first note that scalar field potentials always give rise to an
open set of thawing quintessence solutions (where some of the thawing
solutions are observationally compatible with the ACDM model if a
scalar field potential has a sufficiently slowly changing part) shadow-
ing the thawing quintessence reference orbits. If the present class of
potentials exhibits a positive minimum and 4, <« —1 then apart from
the open sets of orbits that exhibit thawing and tracking quintessence
there also exists an open set of scaling freezing quintessence orbits.
The coexistence of thawing quintessence with tracking and also scaling
freezing quintessence (if the potential has a minimum and 1, <« —1)
causes complications as regards distinguishing thawing quintessence
from tracking and scaling freezing quintessence. This complication is
caused by the orbits FL, — T and FL, — S in the boundary sets
@ = 0 and @ = 1, respectively. It follows that the unstable manifold
of any fixed point FL(‘;’* with 0 < ¢, < | (0 < @, < 1) will shadow
the orbit FL, — T (FL, — S) and hence pass close to T (S), giving
rise to solutions that are both thawing and tracking (scaling freezing)
quintessence models. To avoid this ambiguity we impose the restriction
0« @, <1 (and 0 < @, < 1 for potentials with a minimum and
A, < —1) when describing thawing quintessence models.

5. Numerical simulations for tracking quintessence
Instead of using the inverse power-law potential as an illustra-

tive example, we use the following more versatile class of hyperbolic
potentials:

V=V [%r A= tan’;va [1 + (@ — D(tanhvg)*] ,
39

where ¢ € (0, ), p> 0, v > 0, while « is arbitrary, and

Ay =pva. (40)

For these models a suitable choice of @ is

F(@) = v(1 -, 41

satisfying (19) with b = v, which leads to

_a- PH(L = (@ = )@?)
pll + (x — D@?]?

where I > 1 globally if @ < 2. The special cases a = 1 and a« = 0 with

V o« sinh™?(vgp) and V « tanh™”(vg), respectively, are well known.'®

We note that if we use the illustrative positive potential (39) a
minimum of such a potential implies that « < 0 and where the fixed

@ =tanh(vp) =

G(@ =pv|l+ (-7, r-1 , (42)

16 See Urena-Lopez and Matos (2000) [19] and Bag et al. (2018) [20].
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(a) Tracker orbit for the po- (b) Tracker orbit for the poten- (c¢) Tracker orbit for the poten-

tential (39) with a = 0, and y;,; (39) with

o =1 p= /12 tial (39) with a = 12, v = 2
’ 5

y:p:?,. andszO5
and p = 0.5.
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tial (39) with a = 0, and v = ({5 (39) with a = 1, v = /12 tial (39) with @ = 12, v = 2

p=3 and p = 0.5.

and p = 0.05.

Fig. 3. Tracker orbits in the ski-slope state-space and the respective graph of w,(N) for the potential (39), illustrating that w,, can decrease, be a constant, and increase for the

tracker orbit.

point dS® is located at @, = 1/y/1—a. In order for dS° not only
to be a sink but a spiral sink it follows that pv’a < —3/8, which
follows from the spiral condition 4 |55, < —3/4 in footnote 11 where
Aolo=g, = 2pv2a for the present models. We will use these models to
illustrate that there are three types of tracker orbits for potentials that
are monotonically decreasing: those for which w,, is overall decreasing,
constant, and increasing, and then we will turn to the case of a potential
with a positive minimum.

5.1. Monotonic potentials: Three types of tracker orbits
The central features for tracking quintessence are the tracker fixed

point T and the tracker orbit T — A, where A is one of the fixed points
P, dS for monotonically decreasing potentials depending on whether

0< A, <V2or A, =0, respectively. We then note that
Trwglr =i = =2 1w, lpes =125 = S 42 = S(va?, (43)
@IT T 2+4p @IP/dS P/dS T 37+ T 3 ’

where the last equality follows from (40). Hence the overall de-
crease/increase of w,, for the tracker orbit T — A is determined by the
values of ur and up (or, possibly, uys when w,, is overall decreasing),
which leads to:

\/guT = 1/ % > \/gup/ds =41, overall decrease in W (44a)
3p
\/guT = m = \/gup =1, overall constant W, (44b)

overall increase in W, (44c¢)

[ 3
\/guT: Fpp<\/§upzll+,

where we recall that A, = pva for the potentials (39).

It does not follow in general that w,, is constant during the evolution
for the borderline case (44b), although there is no overall change in
w,, during the evolution from T to P. However, suitable restrictions on
the parameters a, p, v for the potentials (39) give rise to a subclass of
potentials for which w,, = u? — 1 is constant for a particular solution.
In the early years of quintessence, Sahni and Starobinsky (2000) [21],
equation (121), and Urena-Lopez and Matos (2000) [19], investigated
models with the potential (39) with @ = 1, i.e. ¥V « sinh™?(vg), and
pointed out that these models admitted a special solution for which w,,
is constant. This model corresponds to the tracker orbit when w,|r =

w,|p and hence \/guT = \/gup = A, = pv, where the last equality
follows from setting « = 1 in (40), which results in 1/3p/(2 + p) = pv,
and hence

_ 3
TN eTp %)

Positive potentials V' « sinh™?(vg) with any value of p > 0 and the above
value of v result in that the tracker orbit T — P is a straight line in the
state space (@, u, v), parallel to the @ axis given by u = up = \/p/(2 + p),
v =uvr =up/pv =1/ \/3, and thereby with a constant w, given by
1+ w, = u2 = p/(2 + p). Furthermore, since 2, = 3v>%* it follows that
Q, =%
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0
FLY*
(a) Tracker, ACDM, and a thawing

quintessence orbit for the potential (39)
with v =2, p=1/2, and a = —1.
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(c) Graphs of w, for the tracker and
thawing quintessence orbits for the poten-
tial (39) withry =2, p=1/2, and a = —1.
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(b) Tracker, ACDM, scaling freezing, and
a thawing quintessence orbit for the poten-
tial (39) with a = —10, v =2 and p = 1/2.
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(d) Graphs of w, for the tracker, thaw-
ing and scaling freezing quintessence or-
bits for the potential (39) with v = 2,
p=1/2, and o = —10.

Fig. 4. The tracker orbit in the ski-slope state-space and their graphs w,(N) for the potential (39) with a minimum, together with the ACDM orbit, a thawing quintessence
reference orbit originating from FLZ‘, and also a scaling freezing quintessence reference orbit when 4, < —1 in figure (b), with associated graphs of w, in (¢) and (d), where w,
for the thawing orbit begins with w, ~ -1, while the tracker orbit begins with w, ~ —2/(2 + p), which for p = 1/2 yields w, ~ —0.8, and where the dashed scaling freezing orbit

begins with w,, 0.

Along any of the above three types of tracker orbits, the graph of w,
begins during matter-dominance (.Qq, ~ 0) close to T with a horizontal
plateau w, ~ =2/(2 + p), i.e. =1 < w, < 0. During the evolution 2,
thereby starts close to zero near T and then increases to 1 at A. The
present epoch at N = 0 is characterized by that Q,(N) reaches the
observed value Q,(0) = 2,, ~ 0.68. The value of w, at late times
depends on A but its value at the present time depends on A(®) at
@(N = 0). For monotonically decreasing potentials with A, = 0 the
tracker orbit approaches dS and hence w, — —1 asymptotically, but is
greater than —1 when N = 0. These features are illustrated in Fig. 3.

5.2. The tracker orbit for a potential with a minimum

In this case T — dS° where the sink dS° resides on the matter
dominant boundary v = 1 /\/5 with @ = @, determined by A(@,) = 0.

If Aolo=p, < —3/4 then, according to footnote 11, dS° is a spiral
focus sink in the boundary set vy = 1/ V3 (see Figs. 2 and 4). The
fixed point dS” has another feature which helps to describe how the
orbits are attracted to dS°, including the tracker orbit. There is an orbit
FLO(”* — dS® that is a straight line characterized by @ = ¢, = @o>
u=0,0<v<1/ \/3 This orbit describes the ACDM solution, which
corresponds to that the scalar field resides in the positive minimum of
the potential, where (@) = 0 = G(@,), giving rise to A = V() > 0.
All interior orbits are asymptotic to the spiral (assuming that A ;|55 <
—3/4) sink dS° and hence as they come close to dS° they spiral around
the ACDM orbit. In particular, the tracker orbit T — dS° originates from
T with 4 ~ 1, w,, ~ constant and then it bends and eventually forms a
spiral around the ACDM orbit as it approaches dS°. These features are
illustrated in Fig. 4.
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(a) Tracker, undershooting and
overshooting orbits.
ity of ¢ = 0.

(b) Tracker, undershooting and
overshooting orbits in the vicin-
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(c) Graphs of wy,(N) for
the tracker, undershoot-
ing and overshooting solu-
tions.

Fig. 5. The tracker orbit (full line), overshooting (dashed line) and undershooting (dotted line) orbits in the ski-slope state-space and their graphs w,(N) for the monotonically

decreasing positive potential (39) with v=1, p=3 and a =0.

5.3. Tracking quintessence for an open set of initial data

Recall that Steinhardt et al. (1999) [4] characterized the open set of
orbits tracking/shadowing the tracker orbit as undershooting and over-
shooting orbits, which corresponds to u <0, 0 < v < vy (undershooting
solutions) and u > 0, v > vr (overshooting solutions), where the
condition of a long matter-dominated epoch requires these conditions
for initial data to be supplemented by a very small value of @ near the
@ = 0 matter dominant boundary.!” Solutions corresponding to such
initial data shadow orbits on the ¢ = 0 boundary, where we can use
Fig. 1(b) to obtain a feeling for how the solutions behave before they
begin to spiral around T in its vicinity during the matter-dominated
epoch. Since w,, = u? — 1 this also gives a feeling for how graphs of w,,
behave, however, recall that the scalar field is essentially a test field
during the matter-dominated epoch and hence that this behavior of
w,, is not an observable property and thereby physically unimportant.
These features are illustrated in Fig. 5. The graph w,(N) in Fig. 5(c)
of the overshooting (dashed) orbit in Figs. 5(a) and 5(b) covers the
stage when it is very close to the boundary orbit at ¢ = 0, u = \/5
where w, =1 (earlier it shadowed an orbit on the @ = 0 boundary that
passed u = 0 at a very large value of v not shown), subsequently, due
to that ¢’ > 0, it shadows a nearby orbit on the u = \/5 boundary, see
Fig. 5(b), which is followed by shadowing an orbit FLY* — FL{* with
@ = constant < 1, and then an unstable FLg* reference orbit near the
orbit FLg* — T on @ = 0,'® and finally it shadows the tracker orbit T —
ds;'° the graph w,(N) in Fig. 5(c) of the undershooting (dotted) orbit
in Figs. 5(a) and 5(b) covers the stage when this undershooting orbit
shadows an orbit on the @ = 0 boundary when it passes u = 0 where

17 Note that u < O results in ¢’ < 0, which means that the boundary

@ = 0 is stable (attracts nearby orbits), while u > 0 yields @’ > 0 and that
@ = 0 is unstable. The u-dependent stability properties of @ = 0 imply that
undershooting solutions begin tracking sooner than overshooting solutions, see
Fig. 5 and Figure 5 in Steinhardt et al. (1999) [4].

18 This sequence of shadowing orbits is approximately described by shad-
owing a certain orbit on the » = 0 boundary, where the approximation is
improved by choosing a smaller @ datum.

19 Note, as follows from Fig. 5(c), the (dashed) overshooting solution only
obeys the tracker conditions for a short while between approximately N = -5
to N = -3. To increase this time period requires an even smaller initial
value of ¢ than presently, so that the orbit comes closer to T. Note also that
this overshooting orbit illustrates the ambiguity between thawing and tracker
quintessence discussed in the previous section, since it shadows an unstable
FL{" orbit during a thawing epoch.

10

w, = —1 and afterwards where it, due to that @' < 0 when u < 0, comes
extremely close to T and where it subsequently shadows the tracker
orbit T — dS (both the overshooting and undershooting orbits basically
overlap with the tracker orbit after the matter-dominated tracker stage,
where the tracker solution therefore describes the quintessence epoch

of the overshooting and undershooting solutions extremely well).

6. Concluding remarks

We have given, for the first time, a description of tracking quinte-
ssence in a regular state space framework using the e-fold time N,
showing that it is generated by any potential for which 4 is unbounded
with ¢4 — p >0 as ¢ — 0. A central role is played by a unique tracker
orbit that originates from the tracker fixed point T which then governs
the transition from matter-domination to quintessence-domination and
an accelerating universe. Our state space provides some clarification for
the claim of Steinhardt et al. (1999) [4] that with tracking quintessence,
“a very wide range of initial conditions rapidly converge to a common,
cosmic evolutionary track of p,(N) and w,(N)”.

We have shown that potentials with unbounded 4 also lead to
thawing and scaling freezing quintessence (the latter for potentials with
a positive minimum and A1, <« —1) and have used the state space to
make a distinction between the three types, based on which fixed points
the reference orbits originate from (cf. with the more complicated
classification used in AUW [7]). One might ask: Which of the open sets of
different types of quintessence initial data is preferred? Why should tracking
quintessence have a special status?

Finally, we note that the present dynamical systems formulation
can be slightly modified to obtain simple and accurate approximations
with the ACDM model as a continuous parameter/initial data limit
for tracking and thawing quintessence,?® which will be the topic of a
forthcoming paper.

CRediT authorship contribution statement

Artur Alho: Writing — original draft. Claes Uggla: Writing — original
draft. John Wainwright: Writing — original draft.

20 This is not possible for scaling freezing quintessence since w,, = w,, =0
at S and not w, = —1, although it is possible to obtain approximate solutions
for scaling freezing quintessence in the same manner as we will accomplish
for thawing and tracker quintessence.



A. Alho et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
No data was used for the research described in the article.
Acknowledgments

A. A. is supported by FCT/Portugal through CAMGSD, IST-ID,
projects UIDB/04459/2020 and UIDP/04459/2020, and by the Eu-
ropean Union’s H2020-MSCA-2022-SE project EinsteinWaves, GA No.
101131233. A.A. would also like to thank the CMA-UBI in Covilha
for kind hospitality. C. U. would like to thank the CAMGSD, Instituto
Superior Técnico in Lisbon for kind hospitality.

References
[1] P.J.E. Peebles, B. Ratra, Cosmology with a time variable cosmological constant,

Astro. Phys. J. 325 (1988) L17.

B. Ratra, P.J.E. Peebles, Cosmological consequences of a rolling homogeneous

scalar field, Phys. Rev. D 37 (1988) 3406.

B. Ratra, A. Quillen, Gravitational lensing effects in a time-variable cosmological

‘constant’ cosmology, Mon. Not. R. Astron. Soc. 259 (4) (1992) 738-742.

P.J. Steinhardt, L. Wang, I. Zlatev, Cosmological tracking solutions, Phys. Rev.

D 59 (1999) 123504.

[2]

[3]

[4]

11

[5]

[6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Physics of the Dark Universe 44 (2024) 101433

S. Podariu, B. Ratra, Supernova ia constraints on a time-variable cosmological
constant, Astrophys. J. 532 (1) (2000) 109.

P.J.E. Peebles, Bharat. Ratra, The cosmological constant and dark energy, Rev.
Modern Phys. 75 (2003) 559-606.

A. Alho, C. Uggla, J. Wainwright, Quintessence from a state space perspective,
Phys. Dark Univ. 39 (2023) 101146.

A.G. Riess, et al., Observational evidence from supernovae for an accelerating
universe and a cosmological constant, Astron. J. 116 (1998) 1009.

S. Perlmutter, et al., Measurements of omega and lambda from 42 high redshift
supernovae, Astron. J. 517 (1999) 565.

R.R. Caldwell, Rahul Dave, Paul J. Steinhardt, Cosmological imprint of an energy
component with general equation of state, Phys. Rev. Lett. 80 (1998) 1582-1585.
S. Tsujikawa, Quintessence: A review, Class Quantum Grav. 30 (2013) 214003.
S. Bahamonde, C.G. Boéhmer, S. Carloni, E.J. Copeland, Wei Fang, N. Tamanini,
Dynamical systems applied to cosmology: Dark energy and modified gravity,
Phys. Rep. 775-777 (2018) 1-122.

1. Zlatev, L. Wang, P.J. Steinhardt, Quintessence, cosmic coincidence and the
cosmological constant, Phys. Rev. Lett. 82 (1999) 896.

A. Alho, C. Uggla, Quintessential a-attractor inflation: A dynamical systems
analysis, J. Cosmol. Astropart. Phys. 11 (2023) 083.

A. Alho, C. Uggla, Scalar field deformations of lambda-cdm cosmology, Phys.
Rev. D 92 (10) (2015) 103502.

C. Rubano, P. Scudellaro, E. Piedipalumbo, Exponential potentials for tracker
fields, Phys. Rev. D 69 (2004) 103510.

A. Alho, W.C. Lim, C. Uggla, Cosmological global dynamical systems analysis,
Classical Quantum Gravity 39 (2022) 145010.

T. Chiba, A. De Felice, S. Tsujikawa, Observational constraints on quintessence:
Thawing, tracker and scaling models, Phys. Rev. D 87 (2013) 083505.

L.A. Urena-Lopez, T. Matos, New cosmological tracker solution for quintessence,
Phys. Rev. D 62 (2000) 081302.

S. Bag, S.S. Mishra, V. Sahni, New tracker models of dark energy, J. Cosmol.
Astropart. Phys. 08 (2018) 009.

V. Sahni, A. Starobinsky, The case for a positive cosmological lambda-term,
Internat. J. Modern Phys. D 9 (2000) 373.


http://refhub.elsevier.com/S2212-6864(24)00015-3/sb1
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb1
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb1
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb2
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb2
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb2
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb3
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb3
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb3
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb4
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb4
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb4
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb5
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb5
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb5
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb6
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb6
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb6
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb7
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb7
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb7
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb8
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb8
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb8
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb9
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb9
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb9
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb10
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb10
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb10
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb11
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb12
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb12
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb12
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb12
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb12
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb13
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb13
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb13
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb14
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb14
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb14
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb15
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb15
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb15
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb16
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb16
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb16
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb17
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb17
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb17
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb18
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb18
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb18
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb19
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb19
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb19
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb20
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb20
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb20
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb21
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb21
http://refhub.elsevier.com/S2212-6864(24)00015-3/sb21

	Tracking Quintessence
	Introduction
	A regular dynamical system for unbounded λ
	Tracker conditions and general dynamical systems features
	Tracker conditions
	State space features
	Fixed points of the dynamical system
	The matter dominant boundary v=0
	The matter dominant boundary varphi=0 tracker
	The exponential boundary varphi=1
	The scalar field dominant boundary vvarphi=1/3dSo


	Quintessence
	Observationally viable quintessence models
	Thawing quintessence
	Scaling freezing quintessence
	Tracking quintessence

	Thawing, scaling freezing and tracking quintessence

	Numerical simulations for tracking quintessence 
	Monotonic potentials: Three types of tracker orbits
	The tracker orbit for a potential with a minimum
	Tracking quintessence for an open set of initial data

	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


