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Abstract

Today’s society is heavily influenced by the use of cloud-based services and the internet

as a whole. This is causing higher demand for stable networks and maximized efficiency

inside the cloud industry. The direction the cloud-based industry went was to maximize

their hardware using virtualization. To make this happen they had two options one

being virtual machines and the other which grew more common were containers. Ku-

bernetes and Docker are top candidates for virtualized environments which also raises

the question of whether the current network protocol is up to speed, TCP Cubic has been

the standard network protocol in Linux kernels since 2006 but there are newer protocols

that challenge the old standard mainly TCP BBR which was announced by Google 2016.

The current situation between the explosive growth of network-based applications and

the older network-based protocol that was not designed for this type of traffic which

begs the question, is the current standard keeping up to the task? Is the virtualization

causing an impact on the traffic flow and is the older protocol worth it compared to

the newer protocol produced by Google? In this thesis we are going to investigate the

impact on performance, particularly delay and throughput, of the mentioned network

protocols. This will be done by running a Docker container in a Kubernetes cluster to

have a virtualized environment while being able to compare it to a standard test instance

outside of the virtualized container. When the instances are set up there will be traffic

generated by the use of iperf, netem and socket statistics to get the data needed to

compare and evaluate. The experiment that was performed showed an array of different
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ii ABSTRACT

results. When it came to the main questions that were investigated it was concluded

that the TCP protocols BBR and Cubic were not affected by virtualization to the point

that it was harmful to use them within Kubernetes, likewise it was concluded during

the experiment that when introducing packet loss as a variable the protocols expect

differently as theory dictated, TCP cubic handles package loss more aggressively which

leads it to have a lower throughput compared to BBR that quickly tries to resume with

the speed it had before a packet was lost. So to summarize the experiment, Kubernetes

negatively effects both TCP protocols but it is minuscule enough that it will not cause

issues when using virtualized environments. When it comes to the two protocols it is

shown that BBR handles package loss better than Cubic but both protocols provide a

similar throughput when the connection is stable.
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Chapter 1

Introduction

TCP is the prevailing transport protocol on the Internet [3] and for many years TCP

Reno and TCP New Reno [4] have been the primary TCP protocols and, as such, have

been dictating the congestion control standard on the Internet. The use of TCP Reno

and TCP New Reno on the Internet has been increasingly questioned with the growth of

the Internet, mainly due to applications that require more than the "best effort" service

these transport protocols offer. Moreover, with the inception of virtualization, concerns

about these protocols’ performance in virtualized environments have been raised, not

least the extent these protocols affect applications reliant on high bandwidth or short

delays. These concerns have been around but have yet to be answered.

Two categories of congestion control algorithms that have earned particular interest

are model- and delay-based congestion controls. As the name suggests, model-based

congestion control algorithms are built around a model of the network and how it reacts

to increases and decreases in send rate. A well-known model-based congestion control

algorithm is Bottleneck Bandwidth and Round-trip propagation time (BBR), which

was proposed by Google in 2016 [5] and currently being standardized by the Internet

Engineering Task Force (IETF) [6].

1



2 CHAPTER 1. INTRODUCTION

1.1 Problem Description

The increased demand for more cloud-based services and more effective usage of server

hardware has led to more virtualization within servers, e.g., virtual machines and con-

tainers. A question that has emerged with the ongoing server virtualization is whether

current TCP congestion protocols can efficiently work in virtualized server environ-

ments, a question that this thesis aims to address. The current industry standard is to

use Kubernetes as virtual environment while the protocol was standardized by TCP

Cubic and recently moved over to TCP BBR, that setting is what will be used as the

experiments foundation. Kubernetes is quite a powerful tool to use and according to

Enlyft [7] it is used in a multitude of different companies hence why it is being used as

base for the experiment.

1.2 Thesis Objective

This thesis aims to investigate the impact on the performance, particularly delay and

throughput, of TCP BBR and TCP Cubic by running these congestion control algo-

rithms in Docker [8] Containers in a Kubernetes [9] cluster.

1.3 Thesis Goals

To complete the objectives described above we need to start by constructing a Kuber-

netes cluster [9] configured with a Docker container [8], this will be our inside node

which we can transfer data to so we can measure how much virtualization [10] effects

both TCP BBR [5] and TCP Cubic [11]. But to be able to compare this, a secondary

node needs to be setup outside of the network which was made on a secondary server

that is not configured within either Kubernetes nor containers to not be influenced by

virtualization. The data necessary to perform a comparison is collected by the use of the
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tools Iperf3 [12], Socket statistics tool [13] and netem [14]. The first two tools are for

measuring the data transferred between nodes while netem is to add a simulated delay

to get more accurate results that are closer to a real live connection.

1.4 Ethics and Sustainability

This thesis only evaluates protocols and the performance of virtualization environments,

which raises few, if any, questions about ethics or sustainability. In the long term,

it could positively affect sustainability, provided the tests result in changes in TCP

BBR that would increase internet traffic speeds, leading to less power usage. Still,

the decrease in power usage would be minuscule.

1.5 Methodology

This thesis project involved setting up a test environment using Kubernetes to evaluate

TCP BBR and Cubic algorithms. The aim was to compare the throughput of data

transmission within and outside a virtualized network. The test environment consisted

of two machines: a server hosted within a Docker container inside a Kubernetes cluster,

and a client set up as a node outside the virtualized environment. The traffic generated

by the test provided valuable data on the impact on the server side, by comparing round-

trip time, congestion windows, and slow-start threshold to the client side, which served

as a benchmark.

1.6 Stakeholders

This thesis work is being carried out at Karlstads University, with Red Hat being the

primary stakeholder. Red Hat is currently working on Kubernetes clusters, and striving



4 CHAPTER 1. INTRODUCTION

to deliver the best possible solution for their clients. This requires extensive research on

the limits of Kubernetes and the protocols that affect its performance.

1.7 Delimitations

We conducted this project on a small scale, so the test results may not accurately reflect

external factors that can impact speed, throughput, and latency. It is important to note

that there are multiple variables within a network that could affect these metrics. Our

test environment is built with only the minimum components necessary to test our thesis.

However, due to the limited setup, it is impossible to predict how other nodes sending

traffic at the same time would affect a real-scale model.

1.8 Disposition

This thesis begins by introducing the problem and the reason behind this project in

Chapter 1. Chapter 2 presents the congestion control algorithms used in the experiment,

along with Docker [8], Kubernetes [9], and other essential tools. Chapter 3 covers the

implementation of the experiment and explains how the relevant data was extracted and

processed. Moving on to Chapter 4, we dive deep into the experiment’s results, analyze

the data, and discuss its relevance. Finally, the thesis is concluded in Chapter 5.



Chapter 2

Background

This thesis investigates the impact of TCP BBR and TCP Cubic on performance met-

rics , i.e, delay and throughput. The study involves running these congestion control

algorithms in Docker containers configured with the Kubernetes cluster. To evaluate

the algorithms, we will use three networking tools, namely iperf3 [12], the ss (socket

statistics) tool [13] and netem [14]. We create a virtualized environment to generate

networking traffic and compare it with a non-virtualized environment. This study in-

terests Karlstad University [15] and Red Hat [16]. Karlstad University is involved in

researching the development of transport and application layer protocols, while Red

Hat is active in cloud computing and enterprise areas.

The following sections describe Docker containers, Kubernetes, TCP, and the differ-

ent congestion control algorithms used in this project. Section 2.1 introduces the basics

around TCP and its congestion control. Section 2.2 and Section 2.3 explain the two TCP

congestion controls used in this project, Cubic and BBR. Section 2.6 and Section 2.7

explain Docker containers and Kubernetes and how they are used together, both used to

build our experiment.

5
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2.1 TCP and its Congestion Control

The Transmission Control Protocol (TCP) is a reliable transport-layer protocol used

in communication networks [17]. It achieves reliability by initializing a connection

between hosts and maintaining certain status information to detect damaged, lost, or

duplicated data [3]. TCP maintains information such as sequence numbers and window

sizes. Sequence numbers detect if the transmitted data has arrived intact without any

faults. If a positive acknowledgment (ACK) is received from the receiver, no data is

re-transmitted. However, if the ACK is not received within a timeout interval, the data

is re-transmitted [3].

Congestion occurs when a network becomes overloaded, which leads to packets

being discarded or delayed in TCP. When packets are not acknowledged, the data is

re-transmitted, leading to more congestion. Therefore, reasonable congestion control is

necessary, and the information maintained about window sizes plays a crucial role in

managing congestion. There are two types of window sizes used in TCP: sender and

receiver windows. The amount of data that can be sent is determined by how much data

the receiver can receive and how much data the sender can send [18]. The receiver win-

dow size is advertised together with the acknowledgments. However, the sender-receive

window is more complex, as it has to consider the receiver window size. The congestion

window (cwnd) determines the sender’s flow control. It is based on the window sizes

and network conditions. A small cwnd leads to little data being transmitted, meaning

underutilized bandwidth. If the cwnd is big, large amounts of data are being transmitted,

which can lead to congestion. Therefore, a good TCP congestion control algorithm is

needed to ensure good throughput without any congestion occurring.
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Figure 2.1: Visual presentation of congestion window [1]

As Figure 2.1 illustrates, the congestion window increases with a slow start-up to

the threshold value; before hitting the threshold value, it increases faster since it knows

the network can handle that transmission speed. After the threshold value, it slows in

and increases in smaller increments to get maximal flow without causing packet loss.

When the congestion point of the network has been hit, the process restarts and builds

up to a new threshold value to prod the network for its maximum flow rate [1].
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2.1.1 Maximum Transmisson Unit

The Maximum Transmission Unit (MTU) is a term used in TCP that has a significant

impact on congestion control and data transmission over networks. This parameter can

be modified on different network devices [19], and it controls the maximum size of

data that can be sent over a network without getting divided into smaller packets. If a

packet is larger than the MTU, it gets divided into smaller packets, transmitted over the

network, and then reassembled at the receiver’s end.

Fragmentation can cause network inefficiencies and potential delays as it requires

reassembly at the receiver’s end. This can have a significant impact on congestion

control, as it leads to the transmission of more packets that may get lost in flight, which

in turn leads to re-transmissions and congestion.

The cwnd determines the amount of data that can be sent before waiting for an

acknowledgment. Therefore, the MTU size also has an effect on the cwnd. A larger

MTU size may result in faster growth in the cwnd as more data can be sent until

congestion occurs.

2.2 Cubic

Cubic is a widely-used TCP congestion control method that limits the data transfer rate

over a network to prevent congestion. This algorithm has been the default congestion

control algorithm in many operating systems, including Linux, since its introduction in

2006 [20].

Cubic regulates data transmission using a window-based technique, gradually in-

creasing the sending rate until it detects packet loss in the network. The algorithm

calculates the transmitting rate using a cubic function based on the number of packets

in flight and the predicted round-trip time. When packet loss is detected, the algorithm

reduces the transmission rate to prevent future loss. After a reset of transmission, it
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quickly accelerates to reach the previously measured congestion point and then slows

down gradually. Figure 2.2 illustrates the window, with the arrow indicating the point

where the algorithm slows down as it approaches the previously measured maximum

point [2].

Figure 2.2: Illustration of TCP Cubic on its growth and packet loss function [2]

TCP Cubic has been demonstrated to function well in various networks, including

wired and wireless networks, and it is especially effective in high-bandwidth, low-

delay networks. Many studies have been conducted, and the algorithm has been shown

to outperform other TCP congestion control algorithms, such as TCP Reno and TCP

Vegas, in many scenarios [21].

TCP Cubic is a widely used congestion control algorithm for TCP in various net-

work environments. However, in a virtualized setup, it may not perform as well due to

the additional layers of abstraction and overhead introduced by virtualization. These

factors can affect the accuracy of network measurements and the responsiveness of

congestion control algorithms, such as TCP Cubic. Additionally, predicting and re-

sponding to network congestion can be more challenging due to workloads moving

between virtual machines and hosts. Therefore, TCP Cubic may not always be the

best choice for virtualized environments where minimizing virtualization overhead is
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critical. TCP BBR, which stands for Bottleneck Bandwidth and RTT, is an alternative

TCP congestion control algorithm that may be more appropriate for virtualized settings.

2.3 BBR

The early days of the Internet were characterized by loss-based congestion control

algorithms. In 2016, Google introduced a new TCP congestion control algorithm called

BBR, ten years after the introduction of Cubic. BBR is designed to decrease the sending

of packets when lost packets are detected. However, networks have evolved, and we now

have much higher bandwidth than before, and it is still increasing [22].

BBR estimates the available network bandwidth and round-trip time (RTT) using a

model-based approach. This makes it more accurate and effective than other congestion

control algorithms. BBR monitors the packet delivery rate and RTT, and a cubic func-

tion is used to manage the congestion window size. The function uses estimated delivery

rate and RTT from the monitored traffic. BBR also uses pacing to reduce packet loss and

increase efficiency. By correctly calculating and monitoring the available bandwidth and

RTT, BBR achieves better transmission rates and lower latency than other algorithms.

Its model-based approach makes it adaptive to fluctuations and changes in the network,

making it optimal in networks with high variety [6].

TCP BBR is supported by a wide range of operating systems and network ap-

plications. However, its implementation and deployment can be complex. Unlike

Cubic, BBR is not a standard for most operating systems. Furthermore, BBR might

not be appropriate for many networking scenarios and may require tuning to achieve

more optimal performance than other algorithms. It also requires modification and

coordination across the network stack [23].

BBR is now being used in various network applications, including file transfers

and real-time multimedia streaming such as YouTube [24]. Its congestion control is



2.4. VIRTUALIZATION 11

ideal for applications that require high throughput and low latency. Therefore, BBR

might apply to cloud computing and virtualization, where effective data processing

and transmission are essential. TCP BBR is also projected to be crucial in developing

networking technologies such as the Internet of Things (IoT) and 5G networks, which

demand efficient and dependable transfer of data [25].

2.4 Virtualization

Virtualization is a common method of utilizing physical computer hardware for maxi-

mum efficiency. It is frequently used in cloud computing where servers can be optimized

to use their entire capacity for multiple tasks instead of running idle. The way virtualiza-

tion works is by creating an abstract layer over the actual hardware to simulate multiple

containers or virtual machines. Both of these are similar in that they isolate a specific

task and run it as a self-contained unit [26].

The benefits of using virtualization are many. It saves resources, is easier to manage,

has minimal downtime, and is faster to set up newly acquired hardware into a virtual en-

vironment. Prior to virtualization, companies set up servers by having one computer or

server running one operating system used for one task. Nowadays, with virtualization,

one server can run multiple instances of virtual machines or containers, which utilizes

more of the hardware and saves resources.

Downtime is reduced since the instances of both virtual machines and containers

can easily be reinstalled, and most companies have spares, so work can continue with

minimal downtime by just swapping out an inactive instance for the malfunctioning

instance. Furthermore, the instances are normally minimalistic, containing only the

necessary functions to perform their intended tasks, leading to easier re-installation or

replacement if the need arises for replacement of an instance. This also leads to faster

replacement if new hardware is acquired since the instances are designed to be almost
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plug-and-play types, which makes them faster to get going. This also leads to easier

management since all the machines are running the same type of instances, which makes

them easier to control and manipulate if necessary. [10]

Figure 2.3: Illustration the difference between virtual machines and containers

2.5 Virtual Machines

Virtual machines are virtualized environments that operate as a single instance of the un-

derlying hardware. This separates them from both the underlying and other virtualized

environments, providing more security between instances. This means that if one virtual

machine malfunctions, it will not affect other virtual machines. Additionally, running

riskier tasks on virtual machines is safer than running them on the host environment.

Virtual machines can be installed on any platform, without limitations like those of

containers. For example, you can run a Linux distribution on a Windows platform or

run a Windows machine inside a macOS [27].
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2.6 Docker Containers

Docker container technology was first introduced in 2013, and it is a virtualization

technology that allows software applications to be created and managed in isolated

environments [8]. This technology uses containerization, which enables multiple sepa-

rate environments to run on a single host operating system, making it faster and more

efficient than virtual machines. Therefore, Docker containers are more suitable for our

experiment since the overhead is lower than that of virtual machines [28].

Docker containers consist of several components, including a Docker file, a Docker

image, a Docker registry, and a Docker engine. These components are used to create a

Docker container, but the Docker image is where all the application code, runtime, and

libraries are packaged [29]. In our experiment, networking tools such as iperf3 are

packaged into a Docker image.

Despite the numerous benefits of Docker containers, they also have some drawbacks,

such as security risks, complexity, and network issues [30]. Since Docker containers

often come in significant numbers, managing them can be challenging. Also, resource

constraints can be an issue when running multiple containers on a single host machine.

In many scenarios, containers need to communicate with each other, and network issues

and difficulties may occur. Therefore, it is essential to follow best practices like image

size optimization and container orchestration [31]. Image size optimization involves

reducing the size of the Docker images to reduce storage and transport costs, and the

image should only include the necessary libraries and code. Container orchestration

tools like Kubernetes become necessary when running multiple containers.

2.7 Kubernetes

Kubernetes has become the de facto standard for container orchestration in recent years.

It is widely used by enterprises worldwide, and companies like Red Hat contributed
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to the project. Kubernetes, originally developed and designed by engineers at Google,

is an open-source container orchestration platform that automates many processes in

scaling containerized applications [16]. The main benefits of using Kubernetes are the

features enabling automatic scaling, cluster maintenance, self-reparation, and manage-

ment. The scalability also makes it a popular choice in the cloud computing and data

center industries.

The Kubernetes architecture is made up of many components that work together.

The main components are:

1. Pod: A Pod is a group of one or more containers. They share network resources

and storage. Pods are the smallest and most common unit in a Kubernetes Cluster.

A Pod only runs one container. However, it can run multiple containers that need

to work together [32]. As seen in Figure 2.4, Pods are deployed inside the Nodes.

2. Service: The Service component in Kubernetes enables access and communica-

tion with the containers running in a Pod. It makes Pods available on the network

so other components and clients can interact with it. It provides an IP address and

a DNS name to the set of pods in a Node, creating an abstraction [33] over the

Worker Machines as seen in Figure 2.4.

3. Nodes (Worker Machines): Nodes, also called Worker machines, are managed

by the Control Plane; the Nodes contain services necessary to run the Pods, such

as the Kubelet, which reads container manifests and ensures the containers are

running [16].

4. Control Plane: The Control Plane is the head of the cluster; it manages the Nodes

and Pods in a cluster. It comprises components that provide scheduling, self-

reparation, and security to the Kubernetes cluster [34]. In Figure 2.4, we can see

the components inside the Control Plane. Control Planes typically manage many

Worker Machines spread across many physical or virtual machines. To ensure
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high availability, Kubernetes clusters in enterprise environments often consist of

multiple control planes running on multiple machines.

Figure 2.4: A figure of a simple Kubernetes Cluster.

One of Kubernetes’ essential characteristics is its networking capabilities, which al-

low communication between containers running on various nodes and access to services

running within the cluster. However, the complexity becomes much higher when look-

ing into how networking works in such an environment. Each component adds overhead

to the networking, which can result in increased latency and slow performance. The

complexity leads to difficulty troubleshooting network issues, and network optimization

requires tuning [35].
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Chapter 3

Experiment

3.1 Introduction

In this chapter, we will explain the experiment in greater detail. We will start with the

environment and then explain how the tools were used to provide the results that will be

discussed in the next chapter.

3.1.1 Environment

At Karlstad University, the environment is set up on one of their local machines with

two virtual machines running for the experiment. These virtual machines are called

"server" and "client". The server is responsible for the Kubernetes cluster and running

a pod to simulate the necessary parts required for running the tests. The server has two

main functions in our tests: first, to serve as a platform for running traffic to an endpoint

inside the pods, and second, to act as an endpoint outside the cluster, referred to as

"Outside-Cluster". When the traffic passes through the Kubernetes cluster and into the

pod, it is called "Inside-Cluster". The illustration in Figure 3.1 shows how the machines

communicate inside the experiment.

17
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Figure 3.1: Experiment Setup.

3.1.2 SSH

For the experiment, we set up a secure environment using Secure Shell (SSH) [36].

This tool helped us to remotely connect to a computer or server through the network,

allowing us to conduct the experiment remotely. Additionally, it provided more security

by ensuring that the experiment could not be tampered with, which could potentially

have led to inaccurate results.

3.2 Network Tools

In this experiment, we utilized Iperf3 [12] and socket statistics (ss) [13] to measure

and monitor the network traffic. Additionally, we employed netem [14] as a networking

tool to introduce delay, packet loss, and other modifications to the network.
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3.2.1 Iperf3

In this experiment, we are using iperf3 to generate TCP traffic between the Client

and Server. Although iperf3 can be used to monitor the traffic, it only does so once

a second and does not provide detailed network traffic monitoring. Therefore, in this

experiment, we will mainly use iperf3 to generate traffic between the Client and

Server. We will also use the outputs, but to a much lesser extent than the ss tool.

Iperf3 parameters

In the context of network performance testing with iperf3, several configurable pa-

rameters exist. The Maximum Segment Size (MSS), an important parameter, was

modified for this experiment. MSS is calculated based on the Maximum Transmission

Unit (MTU), and it represents the maximum amount of data that a segment can hold,

excluding the TCP/IP headers [19].

The reason behind the change in the MSS parameter was that, outside the Kuber-

netes cluster, the MTU value is 9000 bytes, while inside the cluster is only 1500 bytes.

Figure 3.2: The MTU of our machine outside the Kubernetes cluster

Figure 3.3: The MTU of our machine inside the Kubernetes cluster

In Figure 3.4, the MSS is 8948 bytes, which results in an average of 471 Mbits/sec.

On the other hand, in Figure 3.5, the MSS is only set at 1448 bytes, resulting in an
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Figure 3.4: The MSS of our machine outside the Kubernetes cluster

average of 243 Mbits/sec. Unfortunately, we were unable to modify the MTU inside

the cluster to 9000 bytes. Therefore, we agreed with our supervisor to conduct the tests

using the lower MSS by adjusting the parameters when running iperf3.

3.2.2 Socket statistics tool

We can use the ss tool to gather detailed information about the networking traffic

generated through iperf3. This tool provides data about the round-trip time (RTT),

congestion window size (cwnd), and the slow start threshold for the congestion window

(ssthresh).

3.2.3 Netem

The tool called netem is utilized in the experiment to introduce both delay and packet

loss. The client and server are present within the same network, which results in a

relatively small RTT and no packet loss. Due to this, the cwnd tends to increase at

a rapid pace, and subsequently, congestion can occur instantaneously. To replicate a
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Figure 3.5: The MSS of our machine inside the Kubernetes cluster

normal connection, we included a delay of 10 ms - 50 ms to the experiment setup 3.1.1.

We also added packet loss ranging from 0.0001% to 3% to compare how a model-based

congestion control handles packet loss compared to that of a delay-based congestion

control.

3.3 Docker

As mentioned earlier in the background, Docker was chosen as the primary option for

the experiment. One of the reasons behind this was that Docker is easily scalable and

can be used with minimum resources. This feature was perfect for the experiment as

it caused minimal interruption during the actual experiment. Therefore, the container

created for the purpose of the experiment contained only the bare minimum, along with

the necessary tools that were used.

We needed to create a Docker image that has iperf3 installed. To achieve this, we

used Alpine as our base operating system image, which we pulled from Docker Hub.

This was done because Alpine has a smaller image size compared to Ubuntu, which
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means fewer resources are used. After adding the base image, we installed iperf3

using a command that makes up our Docker image. The complete code for the Docker

image file is available in Appendix A.

To test the image, we first executed it manually on a local machine. Once the image

was up and running, we tested if we could host a server using iperf3. To do this,

we accessed the terminal of the container and set up a server using a simple iperf3

command [12].

Finally, after all the testing was done, we uploaded the Docker image to the Docker

Hub repository. This allows anyone to easily pull the image and use it in their Kuber-

netes Cluster.

3.4 Kubernetes

There are several versions of Kubernetes available since it is an open-source software.

We used Microk8s [37] on our testing machines, but before deploying a Kubernetes

Cluster on our testing machines, we first used Minikube [38] and Kind [39] on our

local machines. We could test configurations and verify whether our Docker image

could be deployed inside a Pod by deploying a local Kubernetes cluster inside our local

machines. The main difference between the Kubernetes implementations we tried on

our local machine is that Minikube creates a Virtual Machine, essentially a single-node

Kubernetes Cluster. In contrast, Kind makes a Docker Container for the cluster [40].

We chose Minikube because we encountered issues with Kind and because Minikube

was the more popular option, which meant more documentation was available for its

use.
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3.4.1 Kubectl

Kubectl [41] is a command-line tool used to manage Kubernetes clusters, which allows

logging, deployment, and management through the terminal.

3.4.2 Minikube

We manually followed the documentation for Minikube and configured a single-node

Kubernetes Cluster on our local machine [38]. To build our Docker image file with

iperf3 installed, we used the Minikube Docker ENV, allowing us to use Docker CLI

to the Docker Engine inside the Virtual Machine created by Minikube. Docker CLI

provides many useful commands and is essential in checking the Docker container

status. It also enabled us to build the Docker container locally using the Docker file in

Appendix A. However, we faced issues. We pushed the Docker file to the Docker Hub

repository, enabling us to pull the image every time we installed a Docker container

with iperf3.

We then created a single Pod with the Docker container inside, containing iperf3.

To generate the iperf3 server, we used a combination of Kubectl and Docker CLI to

issue commands inside the container, which is inside a Kubernetes Pod. With the server

up and running inside the cluster in Minikube, we had to find a way to reach it outside

the cluster.

Minikube Tunnel and Service

To get outside traffic into a Kubernetes cluster, a service [33] is needed, it is the compo-

nent that allows access and communication to the application inside the pod. There are

two types of services that are most commonly used in Kubernetes [42]:

1. LoadBalancer: A LoadBalancer exposes the service to the Internet, it is done by

assigning the Service with an external IP address. The IP address is then used
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by the outside world to talk to the application inside the container. When the

IP address gets requests, it goes through the service which then forwards it to

the ports connected to the Pods, in our case we have a single Pod containing the

server.

2. NodePort: A NodePort does not expose the service to the Internet, it opens a port

and whenever traffic is sent to this specific port, it gets forwarded to the Service.

The Service then forwards the traffic to our Pods just like a LoadBalancer.

The service we used in our Minikube testing environment was the LoadBalancer while

NodePort was used in our actual testing machines. However, when using a LoadBal-

ancer in Minikube, it needs to be exposed to the Internet by using a tunnel. Minikube

tunnel is a command that creates a network route on the host to the Service of the

cluster [33]. By creating a LoadBalancer Service connected to our Pod while having the

tunnel enabled automatically gave it an external IP-address. This is what our Service

looked like in Minikube:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

iperf3-service LoadBalancer 10.109.198.159 10.109.198.159 8080:31260/TCP 4s

In the PORT(S) column, you can find the ports for the service and the Pod. Port 31260 is

where the service accepts traffic from, and then it sends the traffic to port 8080 where the

Pod is located. By having an iperf3 server inside the Pod that listens to port 8080, we

can send iperf3 traffic from outside the cluster by sending it to the service’s external

IP-address on port 31260. The traffic then gets sent to port 8080 where our iperf3

server is located. Each component has some effect on the network traffic as it passes

through. Therefore, we will run multiple tests in our testing machines, both in a normal

connection using TCP BBR and TCP Cubic, and in a connection where the server is

hosted inside a cluster.



Chapter 4

Results

4.1 Introduction

In this chapter the results of our experiment and evaluation will be presented. TCP BBR

and TCP Cubic will be matched against each other by discussing the measurements

extracted from the experiments, considering the usage inside and outside a Kubernetes

cluster.

4.2 Inside a Cluster

This section aims to compare the usage of TCP BBR and TCP Cubic inside a Kubernetes

cluster. It is done by using the networking tools in Section 3.2 inside a deployment of

the Kubernetes Cluster in Section 3.4.

4.2.1 TCP BBR

The following text contains the results of TCP BBR experiments, which are displayed

in the figures below. Figure 4.1 displays the recorded value of the cwnd with a packet

loss of 0.001%. The graph shows that the cwnd quickly peaks to an approximately

25
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6200 MMS before hitting the first congestion point, which reduces the value to 4300 MMS.

The cwnd value remains stable around this number for the rest of the test, with occa-

sional variations. The slow-start threshold remains relatively stable throughout the test

after the initial congestion point, remaining at 180 MMS for the entirety of the test.

Figure 4.1: Graph over TCP BBR inside the cluster, showing cwnd and ssthresh,
0.001% packet drops

When we increased the simulated package drop rate to 3% in netem, we observed

interesting changes in the system’s behavior. Figure 4.2 indicates that the cwnd started

fluctuating more rapidly due to the effect of dropped packages. Additionally, the slow

start threshold quickly increased to the value of 2222 MMS and then remained constant

for the remainder of the test, indicating that the system was adapting to handle the

increased package drop rate.
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Figure 4.2: Graph over TCP BBR inside cluster, showing cwnd and ssthresh, 3%
packet drops

In Figure 4.3, the RTT is depicted. The graph shows the RTT with a package drop

rate of 0.001%. The results are stable around 50.2 ms with a deviation of 0.1 ms. The

larger spikes on the RTT graph correspond to those on the cwnd, indicating the impact

of a packet drop.

Figure 4.3: Graph over TCP BBR inside cluster, showing RTT with 0.001% packet
drops

When increasing the package drop rate to 3% in Figure 4.4 we get the following

results, RTT goes from a steady 50.2 ms on 0.001% to an unstable value that ranges

from 50.5 ms to 51.2 ms with a few spikes that exceed that range.
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Figure 4.4: Graph over TCP BBR inside the cluster, showing RTT with 3% packet drops

4.2.2 TCP Cubic

Below can the graphs of TCP cubic be seen, first graph 4.5 shows the cwnd and slow

start threshold with a simulated package drop rate of 0.001%. As shown on the graph,

the cwnd follows the normal movement of the protocol, rapidly increasing to 4400 MMS

before the first drop, then following up to 3074 MMS for a longer duration before the

second drop. The slow start threshold follows the graph down to the 3rd drop, the part

from the start where it stays at zero, and after the third drop, they both show the standard

curvature of TCP cubic graphs.

Figure 4.5: Graph over TCP Cubic inside cluster, showing cwnd and ssthresh with
0.001% packet drops
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When analyzing the graph depicted in Figure 4.6, which displays the cwnd and slow

start threshold with a higher packet drop rate, we observe a more frequent and erratic

occurrence of drops in the graph. As the package drops increase, the MMS become

much lower, ranging from about 4000 MMS as previously seen to a range of 2 MMS

up to a maximum of 23 MMS, with a few jumps exceeding this range. The slow start

threshold continues to follow its predicted curvature in this scenario, landing at the

beginning of the drop in order to maintain high bandwidth.

Figure 4.6: Graph over TCP Cubic inside cluster, showing cwnd and ssthresh with 3%
packet drops

When examining the round trip time that TCP Cubic experienced, as shown in

Figure 4.7, the measurement is relatively consistent, ranging from 50.2 ms to 50.4 ms,

with only a few minor deviations from this range. The graph also displays smooth

curves, indicating that the frequency of changes is low, which is typical for low package

drops.

When comparing these results to those of the 3% package drops shown in Figure 4.7,

it is noticeable that the measurements are higher and more frequent, indicating a greater

impact from package loss. The measurements range from 50.3 ms to 58.8 ms, with

one measurement spiking quite high at 84.2 ms. This spike is an outlier and does not

represent the general trend observed in the data. Overall, the results clearly illustrate the

impact of package loss on round-trip time and highlight the importance of minimizing
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package drops to ensure optimal network performance.

Figure 4.7: Graph over TCP Cubic inside cluster, showing RTT with 0.001% and 3%
packet drops
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4.3 Outside a Cluster

4.3.1 TCP BBR

TCP BBR appears to have a minimal effect when tested outside the cluster, as indicated

in Figure 4.8. In comparison to the graph inside the cluster, as shown in Figure 4.3,

both graphs have a starting point of 6444 MMS that remains constant for the first part

of the test. However, two drops can be seen before the drop that affected the slow start

threshold. Even after that drop, the curves are similar to the ones inside the cluster.

In contrast, the slow start threshold is much higher outside the cluster. The value

jumps from 180 MMS inside to 2248 MMS outside.

Figure 4.8: Graph over TCP BBR outside cluster, showing cwnd and ssthresh with
package loss of 0.001%
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When looking at the graphs in Figures 4.2 and 4.9, showing the higher drop rates

its noticeable that TCP BBR is equally affected inside the cluster as outside the cluster.

The graph below shows TCP BBR outside the cluster with a package loss of 3%, equal

to the inside graph with the same conditions.

Figure 4.9: Graph over TCP BBR outside cluster, showing cwnd and ssthresh with
package loss of 3%
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In the analysis of TCP BBR’s RTT, it is observed that the RTT outside the cluster

is almost the same as the RTT measured inside the cluster. The graphs in Figures 4.10

and 4.3 show that the RTT fluctuates between 50.0 ms to 50.2 ms, which is similar to

the RTT measured inside the cluster. Furthermore, the results are consistent for higher

packet loss, both inside the cluster (as seen in Figure 4.4) and outside the cluster (as

seen in Figure 4.10).

Figure 4.10: Graph over TCP BBR outside cluster, showing RTT with 0.001% and 3%
packet drops.
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4.3.2 TCP Cubic

TCP Cubic exhibits similar behavior in both internal and external clusters, as seen in

the graphs in Figure 4.11 and Figure 4.5. The curves follow the same trend with little

variation in the measured data. However, the graphs with 0.001% packet drops show

some differences between the internal and external clusters. In the internal cluster, the

first drop occurs earlier and follows the normal curvature for TCP Cubic. In contrast,

the external cluster stays high for a considerably longer time before experiencing the

first packet drop. The slow start threshold is slightly higher in the external cluster,

but the subsequent drops fall further than in the internal cluster, resulting in less stable

throughput outside the cluster.

Figure 4.11: Graph over TCP Cubic outside cluster, showing cwnd and ssthresh with
package loss of 0.001% and at 3%
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The round trip time for TCP Cubic follows the same trend, as observed from the

plot in Figure 4.12., which shows that the value remains roughly the same even with

0.001% package drops. However, there are some differences in the form of a few higher

spikes on the outside as compared to the inside as seen in Figure 4.7, while the value

still remains around the same, possibly 0.1 higher on the outside. On the other hand,

when looking at the 3% package loss graphs on the outside and comparing them to the

inside, there is not much difference when considering the overall data.

Figure 4.12: Graph over TCP Cubic outside cluster, showing RTT with 0.001% and 3%
packet drops
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4.4 Comparison

Based on the comparison of the graphs presented in Figure 4.13, it is evident that TCP

BBR is more efficient in handling interference than TCP Cubic, particularly when the

interference level is high. The experiment results demonstrate that while BBR maintains

a reasonably high throughput, TCP Cubic slows down significantly to an extremely slow

speed. These findings are consistent both inside and outside the Kubernetes cluster,

confirming the theoretical understanding that TCP Cubic experiences difficulties in

handling a large amount of package loss, while TCP BBR can sustain a good throughput

of packages despite the same level of interference.

Figure 4.13: Graphs over TCP BBR and TCP Cubic at maximum interference
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As follows from Figure 4.14, we can see that TCP Cubic starts to experience a

decline in its throughput when there is a mere 0.1% package drop. Consequently, the

throughput is significantly reduced. On the other hand, TCP BBR also experiences an

impact due to package drops but maintains a good throughput.

Figure 4.14: Graphs over TCP BBR and TCP Cubic when TCP Cubic starts to falter
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The last Figure 4.15 added in this chapter is an overview of the results got per test,

it is added as a table to show a compressed version to glance the results and give the

ability to compare them.

Figure 4.15: Compressed information in table form over all the data collected
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Conclusion

This thesis evaluates the performance of two TCP protocols, TCP BBR and TCP Cubic,

in a virtual environment of a Kubernetes cluster. The results show that TCP BBR per-

forms better than TCP Cubic in a Kubernetes cluster. The experiment also indicates that

running the protocols within a virtual environment has a marginal effect. However, the

interference is small enough that it is still worth running servers in a virtual environment.

Based on the results, it can be concluded that TCP BBR performs better than TCP

Cubic, especially with an influence of packet loss. Without packet loss, they are not too

far from each other, making both viable as transport protocols to use. The experiment

also proved that the virtual environment of Kubernetes does not affect the transfer speed

enough to be an issue. This is great news considering how many larger servers are

currently running Kubernetes and virtual environments in general.

To conclude, the virtual environment within servers does not affect the throughput of

protocols TCP BBR and TCP Cubic to any degree that would affect day-to-day usage of

the services on the servers. In light of the limited scope of this thesis work, a future

experiment involving multiple pods communicating on a larger scale could provide

valuable insights into the influence of mixed traffic on the results.
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Appendix A

A.1 - DockerFile

FROM alpine:3.17.1

RUN apk add --no-cache iperf3 \

&& adduser -S iperf

USER iperf

EXPOSE 5201/tcp 5201/udp

ENTRYPOINT ["iperf3"]

CMD ["-s"]
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