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Abstract
A semi-classical approach to the study of the evolution of bosonic or fermionic excita-
tions is through the Nordheim—Boltzmann- or, Uehling—Uhlenbeck—equation, also
known as the quantum Boltzmann equation. In some low ranges of temperatures—
e.g., in the presence of a Bose condensate—also other types of collision operators
may render in essential contributions. Therefore, extended— or, even other—collision
operators are to be considered as well. This work concerns a discretized version—a
system of partial differential equations—of such a quantum equation with an extended
collision operator. Trend to equilibrium is studied for a planar stationary system, as
well as the spatially homogeneous system. Some essential properties of the linearized
operator are proven, implying that results for general half-space problems for the dis-
crete Boltzmann equation can be applied. A more general collision operator is also
introduced, and similar results are obtained also for this general equation.

Keywords Quantum Boltzmann equation · Discrete kinetic equation · Bosons ·
Fermions

Mathematics Subject Classification 81Q10 · 82C10 · 82C22 · 82C40

1 Introduction

TheNordheim—Boltzmann- or, Uehling—Uhlenbeck-equation [19, 22], the so-called
quantum Boltzmann equation, is traditionally used as a semi-classical model for the
evolution of distribution functions for excitations of bosons or fermions [20]. However,
in some ranges of low temperatures—e.g., in the presence of a Bose condensate—also
other collision operators may essentially contribute to the evolution [1, 17, 21]. This
paper concerns a discrete version of the equation
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∂F

∂t
+ (∇pE + vc

) · ∇xF = C12 (F) + C22 (F) + C31 (F) . (1)

Here F = F (t, x,p) denotes the distribution function of the excitations with momen-
tum p = (

p1, p2, p3
) ∈ R

3 at time t ∈ R+ and position x = (x, x2, x3) ∈ R
3,

E = E(p) denotes the Bogoliubov excitation energy, and vc = (v1c , v2c , v3c
) ∈ R

3 the
superfluid velocity. Furthermore, let ε2 = 1, where ε = 1 for bosons and ε = −1 for
fermions, and assume that 0 ≤ F ≤ 1 for ε = −1. The collision integrals (cf. [17, 21]
for ε = 1) are given by

C12 (F) =
∫

(R3)
3
�12 (p∗,p′,p′∗

)
δ0δ3

[
(1 + εF∗) F ′F ′∗

−F∗
(
1 + εF ′) (1 + εF ′∗

)]
dp∗dp′dp′∗,

with

δ0 = δ
(
p∗ − p′ − p′∗

)
δ
(
E∗ − E ′ − E ′∗

)
,

δ3 = δ (p∗ − p) − δ
(
p′ − p

)− δ
(
p′∗ − p

)
,

and

�12 (p∗,p′,p′∗
) = �12 (p∗,p′∗,p′) ;

while

C22 (F) =
∫

(R3)
3
�22 (p,p∗,p′,p′∗

)
δ1
[
(1 + εF) (1 + εF∗) F ′F ′∗

−FF∗
(
1 + εF ′) (1 + εF ′∗

)]
dp∗dp′dp′∗,

with

δ1 = δ
(
p + p∗ − p′ − p′∗

)
δ
(
E + E∗ − E ′ − E ′∗

)
,

and

�22 (p,p∗,p′,p′∗
) = �22 (p∗,p,p′,p′∗

) = �22 (p′,p′∗,p,p∗
)
;

and, finally,

C31 (F) =
∫

(R3)
4
�31 (p∗,p′,p′∗,p′∗∗

)
δ2δ4

[
(1 + εF∗) F ′F ′∗F ′∗∗

−F∗
(
1 + εF ′) (1 + εF ′∗

) (
1 + εF ′∗∗

)]
dp∗dp′dp′∗dp′∗∗,
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with—note that, here the momentum variables of the triple of excitations in a collision
are all primed, with no, one, or two asterisks, ∗ —

δ2 = δ
(
p∗ − p′ − p′∗ − p′∗∗

)
δ
(
E∗ − E ′ − E ′∗ − E ′∗∗

)
,

δ4 = δ (p∗ − p) − δ
(
p′ − p

)− δ
(
p′∗ − p

)− δ
(
p′∗∗ − p

)
,

and

�31 (p∗,p′,p′∗,p′∗∗
) = �31 (p∗,p′∗,p′∗∗,p′) .

Typical expressions for the collision kernels [1, 17, 21] are

�12 (p∗,p′,p′∗
) = k1

(
u∗u′u′∗ − v∗v′v′∗ + (v∗ − u∗)

(
u′v′∗ + v′u′∗

))2 ,

�22 (p,p∗,p′,p′∗
) = k2

(
uu∗u′u′∗ + vv∗v′v′∗ + (uv∗ + vu∗)

(
u′v′∗ + v′u′∗

))2 ,

and

�31 (p∗,p′,p′∗,p′∗∗
)

= k3
(
u∗
(
u′u′∗v′∗∗ + u′v′∗u′∗∗ + v′u′∗u′∗∗

)+v∗
(
v′v′∗u′∗∗ + u′v′∗v′∗∗ + v′u′∗v′∗∗

))2 .

Here and below the notations F ′∗ = F
(
t, x,p′∗

)
, u′∗ = u

(
p′∗
)
etc. are used.

Expressions for k1, k2, k3, u, v, u′, v′ etc. can be found in, e.g., [1, 17]. In the
Nordheim—Boltzmann [19]—-or, Uehling—Uhlenbeck [22]— collision integral
C22 (F) binary collisions between excited atoms are considered, while in the collision
integral C12 (F) binary collisions involving one condensate atom are considered [23].
For more explicit expressions of the kernels �12, �22, and �31 see for example [17].

If the distribution function F is close to a Planckian—i.e., a typical equilibrium
distribution

P = 1

eαE+β·p − ε
,

with α > 0 and β ∈ R
3 (such that αE +β ·p > 0 for ε = 1, which might be obtained

by a truncation in the momentum-space, cf. [2]), then the nonlinear equation (1) can
be approximated by the linearized equation

∂ f

∂t
+ (∇pE + vc

) · ∇x f + L f = 0 for f = f (t, x,p) ,

where

F = P + (P(1 + εP))1/2 f and L = L12 + L22 + L31,
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with

L12 f = n(P(1 + εP))−1/2
∫

(R3)
3
�12 (p∗,p′,p′∗

)
δ0δ3

×
[(

εP∗ − P ′ + (1 − ε) P∗P ′) (P ′∗(1 + εP ′∗))1/2 f ′∗
+ (εP∗ − P ′∗ + (1 − ε) P∗P ′∗

)
(P ′(1 + εP ′))1/2 f ′

+ (1 + ε
(
P ′ + P ′∗

)+ (1 − ε) P ′P ′∗
)
(P∗(1 + εP∗))1/2 f∗

]
dp∗dp′dp′∗,

while

L22 f = (P(1 + εP))−1/2
∫

(R3)
3
�22 (p,p∗,p′,p′∗

)
δ1

[(
εPP∗ − P ′(1 + ε (P + P∗))

)
(P ′∗(1 + εP ′∗))1/2 f ′∗

+ (εPP∗ − P ′∗(1 + ε (P + P∗))
)
(P ′(1 + εP ′))1/2 f ′

+ (P(1 + ε
(
P ′ + P ′∗

)
) − εP ′P ′∗

)
(P∗(1 + εP∗))1/2 f∗

+ (P∗(1 + ε
(
P ′ + P ′∗

)
) − εP ′P ′∗

)
(P(1 + εP))1/2 f

]
dp∗dp′dp′∗,

and

L31 f

= (P(1 + εP))−1/2
∫

(R3)
4
�31 (p∗,p′,p′∗,p′∗∗

)
δ2δ4

[(
P∗
(
ε + P ′ + P ′∗∗

)− P ′P ′∗∗
)
(P ′∗(1 + εP ′∗))1/2 f ′∗

+ (P∗
(
ε + P ′∗ + P ′∗∗

)− P ′∗P ′∗∗
)
(P ′(1 + εP ′))1/2 f ′

+ (P∗
(
ε + P ′ + P ′∗

)− P ′P ′∗
)
(P ′∗∗(1 + εP ′∗∗))1/2 f ′∗∗

+ ((1 + εP ′) (1 + εP ′∗
)+ P ′∗∗

(
ε + P ′ + P ′∗

))
(P∗(1 + εP∗))1/2 f∗

]

× dp∗dp′dp′∗dp′∗∗.

It can be shown (cf. [2] for L12 and, for example, [15] for the linearized Boltzmann
operator) that the linearized operators L12, L22, and L31, and so also L , are symmetric
and nonnegative operators on a suitable L2-space.

The remaining part of the paper is organized as follows. Section2 introduces the
general system of partial differential equations of discrete Boltzmann type considered
to approximate Eq. (1). The collision operators are introduced in Sect. 2.1, while col-
lision invariants and equilibrium distributions are considered in Sect. 2.2. The trend
to equilibrium is considered for a planar stationary system, as well as the spatially
homogeneous system, in Sect. 3, while the linearized collision operator with some
important properties is considered in Sect. 4. The trend to equilibrium in the afore-
mentioned cases can be extended to yield also for a more general collision operator,
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see Sect. 3, and the generalization of the linearized collision operator to this general
collision operator and its properties are considered in Sect. 5.

2 Discrete Model

Consider a general discrete model of equation (1), cf. [4, 6],

∂Fi
∂t

+ ((∇pE
)
i + vc

) · ∇xFi = C12i (F) + C22i (F) + C31i (F) for 1 ≤ i ≤ N .

(2)

Here P = {p1, ...,pN } ⊂ R
d is a finite set of momentum variables, vc ∈ R

d ,(∇pE
)
i = ∇pE

∣∣
p=pi

, and Fi = Fi (x, t) = F (x,pi , t) for i ∈ {1, ..., N }, where
F = F (x,p, t) is the distribution function of the excitations at time t ∈ R+ and
position x ∈ R

d , with 0 < Fi < 1 for i ∈ {1, ..., N } if ε = −1. For generality, allow
p to be of dimension d, rather than of dimension 3.

2.1 Collision Operator

The collision operators C12i (F) are for i ∈ {1, ..., N } given by

C12i (F) =
N∑

j,k,l=1

(
δi j − δik − δil

)
�

j
kl

((
1 + εFj

)
Fk Fl − Fj (1 + εFk) (1 + εFl)

)
,

where the collision coefficients

�
j
kl = �

j
lk ≥ 0 (3)

for any indices { j, k, l} ⊆ {1, ..., N }, with equality in inequality (3) unless conserva-
tion of momentum and energy

p j = pk + pl and E j = Ek + El (4)

is fulfilled, and

δi j =
{
1 if i = j
0 if i 
= j

.

The collision operators C22i (F) are for i ∈ {1, ..., N } given by

C22i (F) =
N∑

j,k,l=1

�kl
i j

(
(1 + εFi )

(
1 + εFj

)
Fk Fl − Fi Fj (1 + εFk) (1 + εFl)

)
,
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where for any indices {i, j, k, l} ⊆ {1, ..., N }

�kl
i j = �kl

j i = �
i j
kl ≥ 0, (5)

with equality in inequality (5) unless conservation of momentum and energy

pi + p j = pk + pl and Ei + E j = Ek + El (6)

is fulfilled. Furthermore, the collision operators C31i (F) are for i ∈ {1, ..., N } given
by

C31i (F) =
N∑

j,k,l,m=1

(
δim − δi j − δik − δil

)
�m

jkl

× (Fj Fk Fl (1 + εFm) − (1 + εFj
)
(1 + εFk) (1 + εFl) Fm

)
,

where for any indices { j, k, l,m} ⊆ {1, ..., N }

�m
jkl = �m

kjl = �m
kl j ≥ 0, (7)

with equality in inequality (7) unless conservation of momentum and energy

pm = p j + pk + pl and Em = E j + Ek + El (8)

is fulfilled.

Remark 1 For a function g = g(p) (possibly depending on more variables than p),
when considering the discrete case, identify g with its restrictions to the points p ∈ P ,
i.e.,

g = (g1, ..., gN ) , with gi = g (pi ) .

Denote by B the matrix, whose rows are the transposes of ∇pE
∣∣
p=p1

+ vc,

...,∇pE
∣∣
p=pN

+ vc, respectively. Then system (2) reads

∂F

∂t
+ (B∇x) · F = C12 (F) + C22 (F) + C31 (F) . (9)

The collision operator C12 (F) in the right hand side of system (9) can be decom-
posed as

C12 (F) = L̃ F + Q̃(F, F) + ˜̃Q(F, F, F),
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where

(
L̃ F
)
i =

N∑

j,k=1

(
2�k

i j Fk − �i
jk Fi

)
,

Q̃i (F,G) =
N∑

j,k=1

(
2�k

i j Q
k
i j (F,G) − �i

jk Q
i
jk(F,G)

)
, and

˜̃Qi (F,G, H) =
N∑

j,k=1

(
2�k

i j Q̃
k
i j (F,G, H) − �i

jk Q̃
i
jk(F,G, H)

)
,

with

Qi
jk(F,G) = 1

2

(
εFi
(
G j + Gk

)+ εGi
(
Fj + Fk

)− (FjGk + G j Fk
))

and

Q̃i
jk(F,G, H) = 1 − ε

2
Fi
(
G j Hk + HjGk

)
.

for any indices {i, j, k} ⊆ {1, ..., N }. Moreover, the collision operator C22 (F) in the
right hand side of system (9) can be decomposed as

C22 (F) = Q(F, F) + Q(F, F, F),

where for i ∈ {1, ..., N }

Qi (F,G) = 1

2

N∑

j,k,l=1

�kl
i j

(
(FkGl + GkFl) − (FiG j + G j Fi

))
,

and

Qi (F,G, H)

= ε

2

N∑

j,k,l=1

�kl
i j

((
Fi + Fj

)
(GkHl + HkGl) − (Fk + Fl)

(
Gi Hj + HiG j

))
,

while the collision operatorC31 (F) in the right hand side of system (9) can be decom-
posed as

C31 (F) = L̂ F + Q̂(F, F) + ̂̂Q(F, F, F),

123



La Matematica (2023) 2:836–860 843

where

(
L̂ F
)
i =

N∑

j,k,l=1

(
3�l

i jk Fl − �i
jkl Fi

)
,

Q̂i (F,G) =
N∑

j,k,l=1

(
3�l

i jk Q
l
i jk(F,G) − �i

jkl Q
i
jkl(F,G)

)
, and

̂̂Qi (F,G, H) =
N∑

j,k,l=1

(
3�l

i jk Q̃
l
i jk(F,G, H) − �i

jkl Q̃
i
jkl(F,G, H)

)
,

with

Qi
jkl(F,G) = ε

2

(
Fi
(
G j + Gk + Gl

)+ Gi
(
Fj + Fk + Fl

))

and

Q̃i
jkl (F,G, H)

= 1

2

(
Fi
(
G j Hl + HjGl + G j Hk + HjGk + GkHl + HkGl

)− Fj (GkHl + HkGl )
)
.

for any indices {i, j, k, l} ⊆ {1, ..., N }.

2.2 Collision Invariants and EquilibriumDistributions

A function φ = φ (p) is a collision invariant if and only if

φi = φ j + φk (10)

for all indices {i, j, k} ⊆ {1, ..., N } such that �i
jk 
= 0,

φi + φ j = φk + φl (11)

for all indices {i, j, k, l} ⊆ {1, ..., N } such that �kl
i j 
= 0, and

φi = φ j + φk + φl (12)

for all indices {i, j, k, l} ⊆ {1, ..., N } such that �i
jkl 
= 0.

The trivial— or, “physical”—collision invariants

φ1 = p1, ..., φd = pd , and φd+1 = E (13)

(also including φ0 = 1 if all collision coefficients �i
jk and �i

jkl are zero) generate
a subspace of the vector space of collision invariants. Note that by Remark 1 and in
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correspondence with relations (10)–(12) the collision invariants φi = φi (p) given in
(13) are vectors.

In the discrete case, unlike in the continuous case with suitable conditions on E , see
[14], there can be spurious—or, “non-physical”—collision invariants. This is a com-
mon problem for different kinds of velocity/momentum models, cf. [13]; if there will
not be enough of admissible collisions, undesired quantitiesφ = φ (p)will be invariant
under collisions—-most trivial case, with no admissible collisions at all, all φ = φ (p)

will be invariant. In fact, to obtain only the desired collision invariants, there must be a
set of N− p—here p denotes the number of desired collision invariants—independent
admissible collisions—i.e., collisions with non-zero collision coefficients, that can’t
be obtained by any chain of other collisions in the set (or their reversion). Consider
below (even if this restriction is not necessary in the general context) only normal dis-
crete models. That is, consider discrete models without spurious collision invariants,
i.e., any collision invariant is of the form

φ = φ (p) = αE + β · p (14)

for some constant α > 0 and β ∈ R
d . Construction of normal discrete kinetic models

and, especially, discrete velocity models for the Boltzmann equation have been exten-
sively studied, see for example [10, 12, 13] and references therein. Those models can
be used in case of approximations of the Bogoliubov excitation energy E = E(p) of
the form E = c1 |p|2 + c2 for constant c1 and c2 (as long as the collision term C22 (F)

is included).
A Maxwellian distribution- or, Maxwellian—is of the form

M = e−φ = e−αE−β·p

or, equivalently,

Mi = e−φi = e−αEi−β·pi for i ∈ {1, ..., N } ,

where φ = (φ1, ..., φN ) is a collision invariant. Moreover, a Planckian distribution—
or, Planckian—is given by

P = M

1 − εM
= 1

M−1 − ε
= 1

eαE+β·p − ε
(15)

or, equivalently,

Pi = Mi

1 − εMi
= 1

eαEi+β·pi − ε
for i ∈ {1, ..., N } ,

for some constant α > 0 and β ∈ R
d (such that αE + β · p > 0 if ε = 1).

Denote by 〈·, ·〉 the Euclidean scalar product in Rn . It is straightforward that
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〈H ,C12 (F)〉

=
N∑

i, j,k=1

�i
jk

(
Hi − Hj − Hk

) (
(1 + εFi ) Fj Fk − Fi

(
1 + εFj

)
(1 + εFk)

)
,

(16)

and so, assuming that 0 < Fi < 1 for i ∈ {1, ..., N } if ε = −1, to prevent a second
type of equilibrium distribution, cf. [18],

〈
log

F

1 + εF
,C12 (F)

〉

=
N∑

i, j,k=1

�i
jk (1 + εFi )

(
1 + εFj

)
(1 + εFk)

×
(

Fj

1 + εFj

Fk
1 + εFk

− Fi
1 + εFi

)(
log

Fi
1 + εFi

− log

(
Fj

1 + εFj

Fk
1 + εFk

))
≤ 0,

(17)

with equality in inequality (17) if and only if

Fi
1 + εFi

= Fj

1 + εFj

Fk
1 + εFk

(18)

for all indices {i, j, k} ⊆ {1, ..., N } such that �i
jk 
= 0. Hence, there is equality in

inequality (17) if and only if
F

1 + εF
is a Maxwellian or, equivalently, if and only if

F is a Planckian.
It is again straightforward that

〈H ,C22 (F)〉 = 1

4

N∑

i, j,k,l=1

�kl
i j

(
Hi + Hj − Hk − Hl

)

× ((1 + εFi )
(
1 + εFj

)
Fk Fl − Fi Fj (1 + εFk) (1 + εFl)

)
,

(19)

and so, again assuming that 0 < Fi < 1 for i ∈ {1, ..., N } if ε = −1

〈
log

F

1 + εF
,C22 (F)

〉
= 1

4

N∑

i, j,k=1

�kl
i j (1 + εFi )

(
1 + εFj

)
(1 + εFk) (1 + εFl )

×
(

Fk
1 + εFk

Fl
1 + εFl

− Fi
1 + εFi

Fj

1 + εFj

)

×
(
log

(
Fi

1 + εFi

Fj

1 + εFj

)
− log

(
Fk

1 + εFk

Fl
1 + εFl

))
≤ 0,

(20)
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with equality in inequality (20) if and only if

Fi
1 + εFi

Fj

1 + εFj
= Fk

1 + εFk

Fl
1 + εFl

(21)

for all indices {i, j, k, l} ⊆ {1, ..., N } such that �kl
i j 
= 0. Then there is equality in

inequality (20) if and only if
F

1 + εF
is a Maxwellian or, equivalently, if and only if

F is a Planckian.
Furthermore, in a similar way

〈H ,C31 (F)〉 =
N∑

i, j,k,l=1

�i
jkl

(
Hi − Hj − Hk − Hl

)

× (((1 + εFi ) Fj Fk Fl − Fi
(
1 + εFj

)
(1 + εFk) (1 + εFl)

))
,

(22)

and so, once again assuming that 0 < Fi < 1 for i ∈ {1, ..., N } if ε = −1

〈
log

F

1 + εF
,C31 (F)

〉

=
N∑

i, j,k,l=1

�i
jkl (1 + εFi )

(
1 + εFj

)
(1 + εFk) (1 + εFl)

×
(

Fj

1 + εFj

Fk
1 + εFk

Fl
1 + εFl

− Fi
1 + εFi

)

×
(
log

Fi
1 + εFi

− log

(
Fj

1 + εFj

Fk
1 + εFk

Fl
1 + εFl

))
≤ 0, (23)

with equality if and only if

Fi
1 + εFi

= Fj

1 + εFj

Fk
1 + εFk

Fl
1 + εFl

(24)

for all indices {i, j, k, l} ⊆ {1, ..., N } such that �i
jkl 
= 0. Then, there is equality in

inequality (23) if and only if
F

1 + εF
is a Maxwellian or, equivalently, if and only if

F is a Planckian.
By the relations (16), (19), and (22),

〈φ,C12 (F) + C22 (F) + C31 (F)〉
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is zero, independently of our choice of nonnegative function F if and only if φ is a
collision invariant, and so (for normal models) the equation

〈φ,C12 (F) + C22 (F) + C31 (F)〉 = 0 (25)

has the general solution (14).

3 Trend to Equilibrium

This section concerns the trend to equilibrium in two particular cases, a planar sta-
tionary case and the spatially homogeneous case.

Note that, by our discrete approach, we avoid some main difficulties in the contin-
uous boson case, like mass concentration and appearance of singular measures in the
models.

3.1 Planar Stationary System

Introduce the functional

H̃[F] = H̃[F](x) =
N∑

i=1

(
∂E

∂ p1
(pi ) + v1c

)
μ(Fi (x)),

where, cf. [19],

μ(y) = y log y − ε (1 + εy) log (1 + εy) . (26)

For the planar stationary system

B
dF

dx
= C12 (F) + C22 (F) + C31 (F) ,

where B = diag

(
∂E

∂ p1
(p1) + v1c , ...,

∂E

∂ p1
(pN ) + v1c

)
, (27)

yields

d

dx
H̃[F] =

N∑

i=1

(
∂E

∂ p1
(pi ) + v1c

)
dFi
dx

log
Fi

1 + εFi

=
〈
log

F

1 + εF
,C12 (F) + C22 (F) + C31 (F)

〉
≤ 0,

with equality if and only if F is a Planckian. Denote the moments—if all collision
coefficients �i

jk and �i
jkl for any {i, j, k, l} ⊆ {1, ..., N }, are zero, then we have to

include also j̃0 = 〈1, BF〉— by
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{
j̃i = 〈Bpi , F 〉 for 1 ≤ i ≤ d
j̃d+1 = 〈BE, F〉 . (28)

By applying equality (25) in system (27) the numbers j̃1, ..., j̃d+1 are independent
with respect to x in the planar stationary case. For some fixed numbers j̃1, ..., j̃d+1—
if all collision coefficients �i

jk and �i
jkl for any {i, j, k, l} ⊆ {1, ..., N } are zero, then

include also j̃0—denote by P the manifold of all Planckians F = P given in (15),
such that the relations (28) are fulfilled. Then the following theorem can be proven by
arguments similar to the ones used for the discrete Boltzmann equation in [16] (see
also [9]; cf. [8]).

Theorem 1 Let F = F(x) be a bounded positive solution to system (27), and assume
that there exists a number η > 0, such that Fi (x) ≥ η for i ∈ {1, ..., N }, and for
ε = −1 that, additionally, Fi (x) ≤ 1 − η for i ∈ {1, ..., N }. Then

lim
x→∞dist(F(x),P) = 0,

where P is the Planckian manifold associated with the same invariants (28) as F. If
there are only finitely many Planckians in P, then there is a Planckian P in P, such
that lim

x→∞F(x) = P.

3.2 Spatially Homogeneous System

For the spatially homogeneous system

dF

dt
= C12 (F) + C22 (F) + C31 (F) , (29)

similar results, presented in Theorem 2 below, can be obtained, by repeating the same
arguments, considering the modified functional

H[F] = H[F](t) =
N∑

i=1

μ(Fi (t)),

with μ given by equality (26), and—if all collision coefficients �i
jk and �i

jkl are
zero for any {i, j, k, l} ⊆ {1, ..., N }, then we have to include also j0 = 〈1, F〉—the
moments

{
ji = 〈pi , F 〉 for 1 ≤ i ≤ d
jd+1 = 〈E, F〉 . (30)

The following result is relevant in the spatially homogeneous case.

Lemma 1 Let P and P̃ be two Planckians with the same moments (30). Then P = P̃.
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Proof Note that

− log
(
P−1 + ε

)
= log

P

1 + εP
=
∑

i∈I
ciφ

i and

− log
(
P̃−1 + ε

)
= log

P̃

1 + ε P̃
=
∑

i∈I
c̃iφ

i ,

for some numbers ci and c̃i and that

〈
φi , P

〉
= ji =

〈
φi , P̃

〉
for i ∈ I .

Here I =
{ {0, ..., d + 1} if �i

jl = �i
jkl = 0 for all {i, j, k, l} ⊆ {1, ..., N }

{1, ..., d + 1} otherwise
and φi

for i ∈ I , are the collision invariants (13). Obviously,

〈
log
(
P−1 + ε

)
, P
〉
= −

∑

i∈I
ci ji =

〈
log
(
P−1 + ε

)
, P̃
〉
and

〈
log
(
P̃−1 + ε

)
, P
〉
= −

∑

i∈I
c̃i ji =

〈
log
(
P̃−1 + ε

)
, P̃
〉
,

and, hence,

N∑

i=1

Pi P̃i
(
P̃−1
i − P−1

i

)
log

(
P−1
i + ε

P̃−1
i + ε

)

=
N∑

i=1

(
Pi − P̃i

)
log

(
P−1
i + ε

P̃−1
i + ε

)

=
〈
log
(
P−1 + ε

)
− log

(
P̃−1 + ε

)
, P − P̃

〉
= 0. (31)

Since

(y − z) log
z

y
≤ 0 (32)

for all positive numbers y > 0 and z > 0, with equality in inequality (32) if and only
if y = z, it follows that

(
P̃−1
i − P−1

i

)
log

(
P−1
i + ε

P̃−1
i + ε

)

=
(
P̃−1
i + ε −

(
P−1
i + ε

))

log

(
P−1
i + ε

P̃−1
i + ε

)

≤ 0 for i ∈ I . (33)
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By equality (31), it follows that P = P̃ , since, in fact, all the inequalities in (33) must
be equalities, and hence, P̃−1

i = P−1
i for all i ∈ I . ��

Theorem 2 Let F = F(t) be a bounded positive solution to equation (29), and assume
that there exists a numberη > 0, such that Fi (t) ≥ η for i ∈ {1, ..., N }, and for ε = −1
that, additionally, Fi (t) ≤ 1 − η for i ∈ {1, ..., N }. Then

lim
t→∞F(t) = P,

where P is the Planckian with the same moments (30) as F.

Remark 2 The above results in Theorems 1 and 2 can be generalized to a more general
case. Let IN = {1, ..., N } and 1 ≤ m ≤ n ≤ N − m, and denote

C (F) =
∑

1≤m≤n≤N−m

amnCmni (F) , with amn ≥ 0,

Cmni (F) =
∑

I ′,I ′′⊂IN|I ′|=n, |I ′′|=m

� I ′′
I ′

(
∑

k∈I ′
δik −

∑

k∈I ′′
δik

)

×
⎛

⎝
∏

j∈I ′
Fj

∏

j∈I ′′

(
1 + εFj

)−
∏

j∈I ′′
Fj

∏

j∈I ′

(
1 + εFj

)
⎞

⎠

=
∑

I ′,I ′′⊂I|I ′|=n, |I ′′|=m

� I ′′
I ′

(
∑

k∈I ′
δik −

∑

k∈I ′′
δik

)

×
∏

j∈I ′∪I ′′

(
1 + εFj

)
⎛

⎝
∏

j∈I ′

Fj

1 + εFj
−
∏

j∈I ′′

Fj

1 + εFj

⎞

⎠ , (34)

where � I ′′
I ′ = 0 if the relations

∑

k∈I ′
pk =

∑

k∈I ′′
pk and

∑

k∈I ′
Ek =

∑

k∈I ′′
Ek

are not satisfied. Then, in a similar way as above, we can obtain corresponding results
for the system (2), (27), (29) with the right hand side replaced by C (F). In particular,
the stationary points of the systems are Planckians and Theorems 1 and 2 are still
valid.

Remark 3 For generalizations to anyons the reader is referred to [8].
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4 Linearized Collision Operator

Given a Planckian

P = 1

eαE+β·p − ε
,

with α > 0 and β ∈ R
d (such that αE + β · p > 0 if ε = 1), inserting the expression

F = P + R1/2 f , where R = P(1 + εP),

in system (9), results in the system

∂ f

∂t
+ (B∇x) · f + L f = S ( f ) .

4.1 The Linearized and Nonlinear Operators

The linearized collision operator—N × N matrix—L = L12 + L22 + L31 is given by

L12 f = −R−1/2
(
L̃ R1/2 f

+2Q̃
(
P, R1/2 f

)+ ˜̃Q(R1/2 f , P, P
)+ 2˜̃Q

(
P, R1/2 f , P

))
, (35)

L22 f = −R−1/2
(
2Q
(
P, R1/2 f

)+ Q
(
R1/2 f , P, P

)

+2Q
(
P, R1/2 f , P

))
, (36)

and

L31 f = −R−1/2
(
L̂ R1/2 f + 2Q̂

(
P, R1/2 f

)+ ̂̂Q(R1/2 f , P, P
)

+2̂̂Q
(
P, R1/2 f , P

))
. (37)

The nonlinear part S ( f ) = S12 ( f , f ) + S22 ( f , f , f ) + S31 ( f , f , f ) is given by

S12( f , g, h) = R−1/2
(
Q̃
(
R1/2 f , R1/2g

)+ ˜̃Q(P + R1/2 f , R1/2g, R1/2h
)

+˜̃Q(R1/2 f , P, R1/2h
)+ ˜̃Q(R1/2 f , R1/2g, P

))
, (38)
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S22( f , g, h) = R−1/2
(
Q
(
R1/2 f , R1/2g

)+ Q
(
P + R1/2 f , R1/2g, R1/2h

)

+Q
(
R1/2 f , P, R1/2h

)+ Q
(
R1/2 f , R1/2g, P

))
, (39)

and

S31( f , g, h) = R−1/2
(
Q̂
(
R1/2 f , R1/2g

)+ ̂̂Q(P + R1/2 f , R1/2g, R1/2h
)

+̂̂Q(R1/2 f , P, R1/2h
)+ ̂̂Q(R1/2 f , R1/2g, P

))
. (40)

In more explicit forms, the operators (35) and (38) read

(L12 f )i =
N∑

j,k=1

�i
jk L

i
jk f − 2�k

i j L
k
i j f

R1/2
i

for i ∈ {1, ..., N } , (41)

where

Li
jk f = (1 + ε

(
Pj + Pk

)+ (1 − ε) Pj Pk
)
R1/2
i fi

+ (εPi − Pk + (1 − ε) Pi Pk) R
1/2
j f j + (εPi − Pj + (1 − ε) Pi Pj

)
R1/2
k fk

and

S12i ( f , f ) =
N∑

j,k=1

�i
jk S

i
jk( f , f ) − 2�k

i j S
k
i j ( f , f )

R1/2
i

for i ∈ {1, ..., N } ,

with for any indices {i, j, k, l} ⊆ {1, ..., N }

Sijk( f , f )

= (1 + (ε − 1) Pi ) R
1/2
j R1/2

k f j fk + R1/2
i fi

×
(
((ε − 1) Pk − ε) R1/2

j f j − ((ε − 1) Pl − ε) R1/2
k fk + (ε − 1) R1/2

j R1/2
k f j fk

)
.

Moreover, the operators (36) and (39) read, in more explicit forms,

(L22 f )i =
N∑

j,k,l=1

�kl
i j

R1/2
i

(
Lkl
i j fi + Lkl

ji f j − Li j
kl fk − Li j

lk fl

)
for i ∈ {1, ..., N } ,

(42)

where

Lkl
i j = (Pj (1 + εPk + εPl) − εPk Pl

)
R1/2
i
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and

S22i ( f , f , f ) =
N∑

j,k,l=1

�kl
i j

R1/2
i

(
Skli j ( f , f , f ) − Si jkl ( f , f , f )

)
for i ∈ {1, ..., N } ,

with for any indices {i, j, k, l} ⊆ {1, ..., N }

Skli j ( f , f , f ) = (1 + εPi + εPj
)
R1/2
k R1/2

l fk fl
(
R1/2
i fi + R1/2

j f j
)

×
(
Pk R

1/2
l fl + Pl R

1/2
k fk + R1/2

k R1/2
l fk fl

)
.

Furthermore, the operators (37) and (40) read, in more explicit forms,

(L31 f )i =
N∑

j,k,l=1

�i
jkl L

i
jkl f − 3�l

i jk L
l
i jk f

R1/2
i

for i ∈ {1, ..., N } , (43)

where

Li
jkl = ((1 + ε

(
Pj + Pk

))
(1 + εPl) + Pj Pk

)
R1/2
i fi

+ (Pi (ε + Pk + Pl) − Pk Pl) R
1/2
j f j

+ (Pi
(
ε + Pj + Pl

)− Pj Pl
)
R1/2
k fk + (Pi

(
ε + Pj + Pk

)− Pj Pk
)
R1/2
l fl

for any indices {i, j, k, l} ⊆ {1, ..., N }, and

S31i ( f , f , f ) =
N∑

j,k,l=1

�i
jkl S

i
jkl − 3�l

i jk S
l
i jk

R1/2
i

for i ∈ {1, ..., N } ,

with for any indices {i, j, k, l} ⊆ {1, ..., N }

Sijkl( f , f , f ) =
(
R1/2
j R1/2

k f j fk + R1/2
j R1/2

l f j fl + R1/2
k R1/2

l fk fl

)(
Pi + R1/2

i fi

)

+
((

ε + Pk + Pl

)
R1/2
j f j

+
(

ε + Pj + Pl

)
R1/2
k fk +

(
ε + Pj + Pk

)
R1/2
l fl

)
R1/2
i fi

− R1/2
j f j

(
Pl R

1/2
k fk + Pk R

1/2
l fl + R1/2

k R1/2
l fk fl

)

− Pj R
1/2
k R1/2

l fk fl .

.
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4.2 Some Properties of the Linearized Collision Operator

By equalities (4), (41), and the relations

Pj (1+εPj )(Pk−εPi+ (ε−1) Pi Pk) = Pi (1+εPj )(1+εPk)=Pj Pk (1+εPi ) ,

and Pj Pk (1 + (ε − 1) Pi ) = Pi
(
1 + ε

(
Pj + Pk

) )

for all indices {i, j, k, l} ⊆ {1, ..., N } such that �i
jk 
= 0, follows, for any functions

g = g(t, x,p) and f = f (t, x,p), the equality

〈g, L12 f 〉 =
N∑

i, j,k=1

�i
jk Pi

(
1 + εPj

)
(1 + εPk)

×
(

fi

R1/2
i

− f j

R1/2
j

− fk

R1/2
k

)(
gi

R1/2
i

− g j

R1/2
j

− gk

R1/2
k

)

.

Similarly, by equalities (6), (42), and the relations

Pi Pj (1 + εPk)(1 + εPl) = Pk Pl(1 + εPi )(1 + εPj )

and Lkl
i j = Pk Pl(1 + εPj )

√
1 + εPi√

Pi

for all indices {i, j, k, l} ⊆ {1, ..., N } such that �kl
i j 
= 0, follows, for any functions

g = g(t, x,p) and f = f (t, x,p), the equality

〈g, L22 f 〉 = 1

4

N∑

i, j,k,l=1

�kl
i j Pi Pj (1 + εPk)(1 + εPl)

×
(

fi

R1/2
i

+ f j

R1/2
j

− fk

R1/2
k

− fl

R1/2
l

)(
gi

R1/2
i

+ g j

R1/2
j

− gk

R1/2
k

− gl

R1/2
l

)

.

Finally, by equalities (8), (43), and the relations

Pj Pk Pl(1 + εPi ) = Pi (1 + εPj )(1 + εPk) (1 + εPl) and
(
Pj − Pi

)
Pk Pl = Pi (1 + εPj )(1 + ε (Pk + Pl))

for all indices {i, j, k, l} ⊆ {1, ..., N } such that �i
jkl 
= 0, follows, for any functions

g = g(t, x,p) and f = f (t, x,p), the equality
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〈g, L31 f 〉 =
N∑

i, j,k,l=1

�i
jkl Pi

(
1 + εPj

)
(1 + εPk)(1 + εPl)

×
(

fi

R1/2
i

− f j

R1/2
j

− fk

R1/2
k

− fl

R1/2
l

)(
gi

R1/2
i

− g j

R1/2
j

− gk

R1/2
k

− gl

R1/2
l

)

.

The following proposition follows.

Proposition 3 The matrix L is symmetric and nonnegative, i.e.,

〈g, L f 〉 = 〈Lg, f 〉 and 〈 f , L f 〉 ≥ 0

for all functions g = g(t, x,p) and f = f (t, x,p).

Furthermore, 〈 f , L f 〉 = 0 if and only if

fi

R1/2
i

= f j

R1/2
j

+ fk

R1/2
k

(44)

for all indices {i, j, k} ⊆ {1, ..., N } such that �i
jk 
= 0,

fi

R1/2
i

+ f j

R1/2
j

= fk

R1/2
k

+ fl

R1/2
l

(45)

for all indices {i, j, k, l} ⊆ {1, ..., N } such that �kl
i j 
= 0, and

fi

R1/2
i

= f j

R1/2
j

+ fk

R1/2
k

+ fl

R1/2
l

(46)

for all indices {i, j, k, l} ⊆ {1, ..., N } such that �i
jkl 
= 0. Denote f = R1/2φ in

equalities (44)–(46), obtaining the relations (10)–(12), respectively. Hence, since L is
nonnegative,

L f = 0 if and only if f = R1/2φ,

where φ is a collision invariant (14), and the following proposition follows.

Proposition 4 The kernel of the linearized operator L is given by

ker L =
{
f | f = √P (1 + εP)φ, where φ is a collision invariant

}
.
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Note that S ( f ) ∈ ImL = (ker L)⊥, since
〈
S ( f ) , R1/2φ

〉
= 〈C12 (F) + C22 (F) + C31 (F) , φ〉 +

〈
f , LR1/2φ

〉
= 0

for all collision invariants φ.

Remark 4 The general results obtained for planar stationary half-space problems for
the discrete equations obtained in [3, 6, 11], yield also for the extended discrete quan-
tumBoltzmann equation presented here. Indeed, consider the planar stationary system
(27)—for the linearized collision operator, possibly also with an inhomogeneous term,
see [3, 6, 11], or in a weakly non-linear setting, see [6]—for x > 0. Assume the

components Fi (0) of the distribution function at x = 0 for which
∂E

∂ p1
(pi ) + v1c is

positive to be given - possibly linearly depending on the components of F (0) forwhich
∂E

∂ p1
(pi ) + v1c is negative. Then results concerning the number of conditions needed

for existence and/or uniqueness of solutions-based on the signature of the restriction
of the quadratic form 〈·, B·〉 to the kernel of L in [3, 6, 11] can be applied. We stress
that the results presented in [3, 6, 11] can be applied also for the Cauchy problem in
the spatially homogenous case.

Remark 5 The results can be extended to mixtures, including the case of mixtures
containing both bosons and fermions—i.e. not necessarily with the same ε for differ-
ent species, and particles with a discrete number of different energy levels, with the
approaches presented in [5–7, 10], see Remark 7 below.

5 Linearized Collision Operator for a General Collision Operator

Now consider the general collision operator (34). Denoting

F = P + R1/2 f , where R = P (1 + εP) ,

in system (2), with the right hand side replaced by the general collision operator (34),
and linearizing in f , one obtain

∂ fi
∂t

+ ((∇pE
)
i + vc

) · ∇x fi + (L f )i = 0

where L is the linearized collision operator (N × N matrix) given by

(L f )i =
∑

1≤m≤n≤N−m

amn (Lmn f )i for i ∈ {1, ..., N } , (47)
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with amn ≥ 0 and

(Lmn f )i =
∑

I ′,I ′′⊂IN|I ′|=n, |I ′′|=m

� I ′′
I ′

R1/2
i

(
∑

k∈I ′
δik −

∑

k∈I ′′
δik

)

⎛

⎝
∑

j∈I ′

(
P I ′′
I ′
)

i
f j −

∑

j∈I ′′

(
P I ′′
I ′
)

i
f j

⎞

⎠ . (48)

Here, denoting

	I ′′
I ′ (g) =

∏

j∈I ′
g j

∏

j∈I ′′

(
1 + εg j

)−
∏

j∈I ′′
g j

∏

j∈I ′

(
1 + εg j

)
,

follows that for � I ′′
I ′ 
= 0,

(
P I ′′
I ′
)

i
= ∂	I ′′

I ′
(
P + R1/2 f

)

∂ fi

∣
∣∣∣∣
f =0

= R1/2
i

⎛

⎝ 1

Pi

∏

j∈I ′
Pj

∏

j∈I ′′

(
1 + εPj

)− ε

1 + εPi

∏

j∈I ′′
Pj

∏

j∈I ′

(
1 + εPj

)
⎞

⎠

= 1

R1/2
i

∏

j∈I ′′
Pj

∏

j∈I ′

(
1 + εPj

) 1

Pi (1 + εPi )
Ri

= 1

R1/2
i

∏

j∈I ′′
Pj

∏

j∈I ′

(
1 + εPj

)
, (49)

since (cf. relations (18), (21), and (24))

∏

j∈I ′

Pj

1 + εPj
=
∏

j∈I ′′

Pj

1 + εPj
(50)

for � I ′′
I ′ 
= 0. Hence, by the equalities (47)–(50), follows the equality

〈g, L f 〉 =
∑

1≤m≤n≤N−m

amn�
I ′′
I ′
∏

j∈I ′′
Pj

∏

j∈I ′

(
1 + εPj

)

×
⎛

⎝
∑

j∈I ′

f j

R1/2
j

−
∑

j∈I ′′

f j

R1/2
j

⎞

⎠

⎛

⎝
∑

j∈I ′

g j

R1/2
j

−
∑

j∈I ′′

g j

R1/2
j

⎞

⎠ . (51)
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From equality (51), it is easy to see that the matrix L is symmetric and nonnegative.
Furthermore, by the equality (51), 〈 f , L f 〉 = 0 if and only if

∏

j∈I ′

f j

R1/2
j

=
∏

j∈I ′′

f j

R1/2
j

(52)

for all sets I ′ and I ′′ such that � I ′′
I ′ 
= 0. Denote f = R1/2φ in the relation (52),

obtaining

∏

j∈I ′
φ j =

∏

j∈I ′′
φ j

for all sets I ′ and I ′′ such that � I ′′
I ′ 
= 0. Hence, since L is nonnegative,

L f = 0 if and only if f = R1/2φ,

where φ is a collision invariant, and the following proposition follows.

Proposition 5 The linearized operator L is symmetric and nonnegative, and its kernel
is given by

ker L =
{
f | f = √P (1 + εP)φ, where φ is a collision invariant

}
.

Remark 6 We note that the general results obtained for linearized half-space problems
for the discrete Boltzmann equation obtained in [3, 11], and for a discrete quantum
Boltzmann equation in [4], yield also for the discrete Boltzmann equation for the
general linearized collision operator considered here, cf. Remark 4. Again we stress
that the results presented in [3, 4, 11] can be applied also for the Cauchy problem in
the spatially homogenous case.

Remark 7 The results can again be extended tomixtures, including the case ofmixtures
containing both bosons and fermions, and particles with a discrete number of different
energy levels, with the approaches presented in [5–7, 10]. Indeed, the key feature is
that to each component Fi of the distribution function F there will be assigned not
only a momentum pi , but also a species αi with species-dependent εαi , where ε2αi = 1,
and possibly also an internal energy Ii . The sets of admissible momentums—and pos-
sible sets of internal energies—may vary for different species. At a formal level, this
extension seems merely to be a matter of notation. Regarding implementations, it is
another story: e.g., finding models without spurious collision invariants will be a more
delicate task, even if known models for discrete velocity models of the Boltzmann
equation, see [5, 7, 10] and references therein, again can be used in case of approxi-
mations of the Bogoliubov excitation energy E = E(p) of the form E = c1 |p|2 + c2
for constant c1 and c2 (as long as the collision term C22 (F) is included). Also, even if
not restricted to the discrete case, there will be several different collision operators of
each kind, e.g., for s different species there will be s2—one for each ordered pair of
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species—collision operators of type C22, 2 s2 − s—for each ordered pair of different
species there will be two different—collision operators of type C12, etc..
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