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Loudspeaker cabinet design 
by topology optimization
Ahmad H. Bokhari 1, Martin Berggren 1, Daniel Noreland 1,2 & Eddie Wadbro 1,3*

Using material distribution-based topology optimization, we optimize the bandpass design of a 
loudspeaker cabinet targeting low frequencies. The objective is to maximize the loudspeaker’s 
output power for a single frequency as well as a range of frequencies. To model the loudspeaker’s 
performance, we combine a linear electromechanical transducer model with a computationally 
efficient hybrid 2D–3D model for sound propagation. The adjoint variable approach computes the 
gradients of the objective function with respect to the design variables, and the Method of Moving 
Asymptotes (MMA) solves the topology optimization problem. To manage intermediate values of the 
material indicator function, a quadratic penalty is added to the objective function, and a non-linear 
filter is used to obtain a mesh independent design. By carefully selecting the target frequency range, 
we can guide the optimization algorithm to successfully generate a loudspeaker design with the 
required bandpass character. To the best of our knowledge, this study constitutes the first successful 
attempt to design the interior structure of a loudspeaker cabinet using topology optimization.

Loudspeaker  systems1,2 are designed to reproduce sound within the range of human hearing. However, it is dif-
ficult to design a single loudspeaker that can efficiently reproduce the whole frequency range. Therefore, separate 
loudspeakers are often used to cover different parts of the sound spectrum. The loudspeaker aimed at the lowest 
frequencies is referred to as a subwoofer. Public address systems, movie theaters, home theaters, and car audio 
systems all use subwoofers. Here, we optimize a so-called  bandpass3,4 design of a subwoofer loudspeaker, in which 
a transducer is mounted in a sealed back chamber and radiates into a ported front chamber. The back chamber 
serves as a high pass filter, while the front chamber and port serve as a low pass filter, jointly forming an acoustic 
bandpass filter. The high pass filter restricts the movement of the transducer’s membrane and protects it from 
exceeding excursion limits. The low pass filter hampers the transmission of high frequencies, including spurious 
ones caused by distortion in the transducer, an effect not possible to achieve with mere signal processing at the 
source. This type of loudspeaker can be designed for a narrow frequency band with high efficiency or a wider 
frequency band that also includes the low frequencies at the expense of efficiency.

In this study, we use a material distribution based topology optimization method to design the loudspeaker 
cabinet. This method seeks to the optimal placement of material inside a design domain. This domain is divided 
into pixels (or voxels in 3D), and an optimization algorithm finds for each pixel whether or not it should be 
occupied by material to extremize an objective function. Initial work by Bendsøe and  Kikuchi5 laid the foun-
dation for material distribution based topology optimization. Bendsøe and  Sigmund6 comprehensively sum-
marize early research on topology optimization techniques and their applications. This concept has been suc-
cessfully employed for optimizing modern  automotive7 and aircraft  structures8,9. Moreover, the method has 
also proven successful for other applications, such as fluid  flow10, heat  transfer11,  optics12,  electromagnetics13,14, 
and  acoustics15–17; however, techniques for design optimization are still maturing in these fields. The methods 
in acoustics focus on optimizing individual components, such as loudspeaker  horns15 and sound  mufflers18,19, 
under idealized conditions. However, real-life acoustic systems consist of many components that interact and 
affect each other’s performance. Separate optimization of each system component under idealized conditions will 
most likely yield a sub-optimal design. In recent studies, topology optimization has been used to optimize phase 
 plugs20,  waveguides21, as well as material properties of a  transducer22. In this study, we do not aim to optimize a 
transducer or elements of loudspeaker. Instead, we employ topology optimization to optimize the loudspeaker 
cabinet by using a model that takes into account the transducer’s effects within the linear regime.
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Acoustic modeling
Consider the loudspeaker setup illustrated in Fig. 1. A transducer is mounted in a sealed back chamber at the 
center of a baffle and an output port is located in the front chamber. We will see that this base design indeed pos-
sesses a bandpass quality, albeit quite poorly. To improve the performance characteristics, a material distribution 
based topology optimization algorithm will place additional solid material within the front chamber. To model 
the sound propagation from the applied voltage on the voice coil of the transducer, through the loudspeaker’s 
interior, and out to the exterior, we developed a full 3D as well as a computationally efficient hybrid  model23 that 
uses a modular approach where the properties of interacting modules can be precomputed. The 3D model is not 
computationally feasible to use in an optimization loop. Hence, we employ the computationally more efficient 
hybrid method in the optimization loop, and validate the final result using the 3D model.

In the 3D as well as hybrid method, we employ lumped-element models of the electrical as well as mechani-
cal properties of the moving coil transducer. Furthermore, we use a stiff approximation of the transducer’s 
diaphragm. Thus, the models are restricted to the small-signal regime. The lumped equations are coupled to the 
finite element model, which solves for the acoustic pressure inside the loudspeaker. In addition, we employ the 
boundary element method to model the interaction of the loudspeaker’s port with the exterior.

To generate sound at low frequencies, the transducer needs to move large air volumes, which can cause over 
excursion, moving the coil to a region of non-homogeneous flux density, resulting in a non-linear behavior. We 
do not aim to model this or other non-linear effects that can generate distortion in the form of high harmonics. 
However, we note that in the bandpass design, the front chamber dampens high harmonic distortion induced by 
the transducer, while the back chamber limits the excursion by providing additional stiffness to the transducer. 
Moreover, the improved performance also reduces the required excursion for a given sound pressure and con-
sequently distortion. Hence, the bandpass design of loudspeaker counteracts non-linearities in the transducer. 
Other complex behaviors, such as modal break up of the diaphragm movement, is of little concern here, because 
the diaphragm essentially acts as a piston at low frequencies; the first modal break up occurs at frequencies above 
700Hz for conventional  diaphragms2, p. 15. Another important aspect in designing a loudspeaker aimed at low 
frequencies is to select cabinet material that is acoustically rigid. High sound pressures can cause resonances in 
the walls if they are not thick enough, causing coloring and distortion of sound. The most common materials for 
building loudspeaker enclosures are plywood and MDF (medium-density fiberboard), which have good damping 
properties. The wall thickness varies depending on the cabinet volume and the size of the transducer. We assume 
that the walls of the loudspeaker enclosure are thick enough to be acoustically rigid. In the following two sections, 
we present a summary of the 3D and the hybrid model, respectively. For details, we refer to the full  account23.

The 3D model
Consider the cross-section of the loudspeaker setup illustrated in Fig. 2 (left), with dimensions w × h× d , where 
d is in a direction perpendicular to the plane. The dimensions of the baffle and the output port are w × d and 
hp × d , respectively. Let Ŵc

b and Ŵc
f  denote the back and the front of the transducer’s diaphragm, respectively. 

Similarly, let �b and �f  denote the back and the front chamber, respectively. Let ec be the unit vector in the direc-
tion of motion of diaphragm, the negative y-direction in Fig. 2 (left). Moreover, let Ŵp denote the output port 
that separates the loudspeaker’s interior from its exterior, and Ŵs all sound-hard walls.

The loudspeaker’s interior
We consider time-harmonic linear wave propagation inside the loudspeaker’s interior and assume that the acous-
tic pressure satisfies P(x, t) = ℜ{p(x)eiωt} , where i is the imaginary unit, p the complex pressure amplitude, ω 
the angular frequency, and t the time. This assumption gives us the Helmholtz equation for p. That is,

(1)ω2p+ c2�p = 0, in�f ∪�b,

Output port

Front chamber

Back chamber

Baffle

Transducer

Figure 1.  Cutaway drawing of the loudspeaker with an empty front chamber.
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where c is the speed of sound and � = ∇ · ∇ the Laplace operator.
As stated earlier, we assume all the walls to be rigid (sound-hard), which implies the boundary condition

The linearized Euler equation gives a relation between the diaphragm velocity uc and the pressure pb inside �b , 

and the pressure pf  inside �f ,

 where k = ω/c is the wave number, ρ is the air density, and nb and nf  are outward directed normals with respect 
to �b and �f  , respectively.

Furthermore, we use mechanical and electric circuit equations to model the electromechanical properties of 
the transducer. The mechanical model expresses the balance of forces on the speaker diaphragm,

where Mmd is the moving mass of the diaphragm, Rms the mechanical resistance, Cms the mechanical compliance, 
Bl the force factor, and I the electric current amplitude in the voice coil.

Remark 1 Throughout this article, we omit symbols of measure, such as dŴ or d� , in integral expressions, since 
the type of measure will be clear from the domain of integration.

To complete the transducer model, we use the simple electric circuit illustrated in Fig. 3 (right) given by

where the amplifier voltage V is the input to the system, R is the electric resistance, and L is the inductance.

The loudspeaker’s exterior
To model the interaction of the output port Ŵp with the loudspeaker’s exterior, we divide Ŵp into Np = N

p
h × N

p
d  

square panels, Ŵp
j  , where j = 1, 2, . . . ,Np , as illustrated in Fig. 2 (right). For each panel, we let upj  denote the 

complex normal velocity on Ŵp
j  and 〈p〉Ŵp

j
 the average pressure on Ŵp

j  . We assemble an Np × Np matrix Zp
3D that 

relates the normal velocities up =
[
u
p
1, u

p
2 , . . . , u

p
Np

]T to the pressures pp =
[
�p�Ŵp

1
, �p�Ŵp

2
, . . . , �p�Ŵp

Np

]T through 
the impedance relation

(2)
∂p

∂n
= 0, on Ŵs.

(3a)∂pb

∂nb
+ ikρcucec · nb = 0 on Ŵc

b,

(3b)∂pf

∂nf
+ ikρcucec · nf = 0 on Ŵc

f ,

(4)
(

−ω2Mmd + iωRms +
1

Cms

)

uc = iω

[

BlI +

∫

Ŵc

ec · (nbpb + nfpf)

]

,

(5)(R + iωL)I + Bluc = V ,

(6)Z
p
3Du

p = pp.
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Figure 2.  The 3D model. Left: Cross-section of the loudspeaker with an empty front chamber. Right: Front view 
of the loudspeaker where Ŵp is divided into Np = N

p
h
× N

p
d

 panels.
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For each frequency under consideration, we compute the impedance matrix Zp
3D column by column by solving 

Np exterior Helmholtz problems with successive unit excitations on each of the panels. The boundary-element 
solver in the commercial Pafec VibroAcoustics software is used for this calculation.

The hybrid model
Consider the cross-section of the loudspeaker illustrated in Fig. 3 (left). For computational purposes, we split 
the interior into two domains at the baffle, an upper box formed by the domain above the baffle, and a lower 
box, with dimensions w × hl × d , formed by the domain below the baffle. The domain � is the full lower box. 
We assume that all the walls and internal solid structures inside � are extruded in the z-direction. Let γ t denote 
the boundary that separates the two domains, and let γ p denote the output port.

We assume planar symmetry in the acoustic pressure along the z-axis in the air region of � . The variations in 
the direction of the z-axis will be negligible due to the long wavelengths. This assumption allows the use of 2D 
wave propagation (in the xy-plane), which provides two advantages. First, it is computationally advantageous for 
use in an optimization loop compared to a full 3D model. Second, the planar symmetry provides construction 
advantages, as the interior can then be built by placing, say, wooden slabs aligned with the z-axis in the lower box. 
However, we employ a 3D model for the upper box and the exterior because 3D effects cannot be avoided there.

The loudspeaker’s exterior
We assume planar symmetry in the lower box for the acoustic pressure, but we cannot use the same assumption 
to model the interaction with the exterior. Similarly, as for the 3D model, we pre-compute the acoustic properties 
by assembling an impedance matrix. We assume the acoustic velocity to be constant on each boundary segment 
γ
p
j  , j = 1, . . . ,N

p
h and extend each of these into depth-running strips, γ p

j × (0, d) on which the acoustic velocity 
still is assumed to be constant. Now the exterior response of a unit velocity on each strip can be computed using 
the full 3D boundary-element method. In fact, the response is already available from the matrix Zp

3D by adding 
all columns corresponding to a particular strip. For each strip on the port, averaging corresponding rows of Zp

3D , 
we obtain the average pressure response to the applied unit strip velocity. In this way, we obtain an Np

h × N
p
h  

matrix Zp
2D that relates the normal velocities up on each strip γ p

j × (0, d) to the average pressures pp on all strips 
through the impedance relation

where up =
[
u
p
1, u

p
2 , . . . , u

p

N
p
h

]T and pp =
[
�p�γ p

1
, �p�γ p

2
, . . . , 〈p〉γ p

N
p
h

]T , in which 〈p〉γ p
j
 and upj  holds the average 

pressure and the normal velocity on γ p
j  , respectively.

The loudpeaker’s interior
The upper box
We seek to represent the interaction at γ t with the upper box in terms of the acoustic response of the back 
chamber as well as the coupling to the electromechanical model of the transducer. Hence, in addition to pres-
sures and velocities, also the diaphragm velocity uc (in the negative y-direction) and the voice coil current I are 
taken into account while computing the response of the upper box. Although it is reasonable to assume planar 
symmetry and thus carry out 2D calculations in the lower box, we cannot make this assumption above γ t due 
to the presence of the cylindrically-shaped transducer that creates a local sound field extending throughout the 

(7)Z
p
2Du

p = pp,
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Figure 3.  Left: The hybrid model, cross-section of loudspeaker with an empty front chamber. Right: The electric 
circuit model of the transducer.
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back chamber. Therefore we make a “hybrid” ansatz and compute in full 3D in the upper box, but average the 
pressure response in the depth direction as it concerns the effects on the lower box.

More precisely, we divide the boundary γ t into line segments γ t
j  , where j = 1, 2, . . . ,N t , extend these into 

the depth region to obtain strips γ t × (0, d) . Each such strip, in succession, is given a unit velocity amplitude, 
while the other strips, as well as the diaphragm velocity, are held at zero velocity. In addition, a unit diaphragm 
velocity is imposed, while the strips are held at a zero velocity. In each of these cases, the acoustic pressure is then 
computed in the full 3D back chamber. Finally, for each of these excitations, we compute the voice coil current 
I as well as the pressure response averaged over each of the N t strips. This procedure enables us to obtain an 
impedance relation of the form

where the N t × N t block Ztt represents the acoustic response of the back chamber, the N t × 1 block Ztc , the 
1× N t block Zct , the 1× 1 block Zcc represent the interaction with the speaker diaphragm; ut =

[
ut1, u

t
2, . . . , u

t
N t

]T 
and pt =

[
�p�γ t

1
, �p�γ t

2
, . . . , �p�γ p

Nt

]T , in which utj is the normal velocity on γ t
j  , and 〈p〉γ t

j
 denotes the average pres-

sure on γ t
j  . To compute this matrix, we set up a full 3D finite element model of the upper box, including a linear 

electromechanical model of the transducer, in the commercial software Comsol Multiphysics. Matrix Zt is then 
computed, for each frequency, column by column by exciting the velocity of each strip in succession as well as 
an excitation of the diaphragm and computing corresponding voice coil current and averaging the pressure 
response over each strip.

The lower box
Physically, the panels γ p

j  and γ t
j  correspond to massless and stiff pistons. The acoustic impedance relation is valid 

provided that the boundaries γ p and γ t have air on both sides. To ensure this property, we split � into three 
non-intersecting parts, illustrated in Fig. 4, denoted �t , �d , and �p and do not allow material to be placed in 
�t and �p.

Further, we define material indicator function α such that α = 1 in the air region and α = 0 in the solid region. 
(In practice, we use α = 1 in the air region and α = ε > 0 in the solid, where ε is a small positive number.) As 
mentioned earlier, we do not allow material to be placed in �t and �p . That is, we require α ≡ 1 in both �p and 
�t . Wave propagation in the lower box is governed by the following Helmholtz equation for the acoustic pressure,

Remark 2 The model in Eq. (9), where the material indicator function α controls the presence and absence of 
material inside � , was introduced by Wadbro and  Berggren15 for acoustic horn optimization and has been used in 
many contributions since then. In material distribution topology optimization, redefining the material indicator 
function by replacing α = 0 with α = ε > 0 is a standard  strategy6 to obtain a unique solution to the governing 
equation. A relevant question is how much this approximation will affect the solution. Using this approxima-
tion in the Helmholtz type Eq. (9), Kasolis et al.24 performed an analysis which revealed that the error is linear 
in ε to the solution of an exactly modeled scatterer with Neumann conditions on the sound-hard walls. In the 
computations reported below, we set ε = 10−3.

(8)

[
ZttZtc

ZctZcc

]

︸ ︷︷ ︸
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]

=
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,

(9)ω2αp+ c2∇ · (α∇p) = 0 in�.
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Figure 4.  Left: Computational domain � . Right: Filtering domain �f.
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Finite element discretization
The domain � is discretized using a uniform mesh of square elements. We use standard continuous, piecewise 
bi-quadratic basis functions for the complex pressure, denoted by ϕ1, ϕ2, . . . , ϕN� , where N� is the number 
of degrees of freedom in the finite element approximation. In addition, we approximate α by an element-wise 
constant material indicator function αh.

By putting together a finite element discretized version of the governing Eq. (9), impedance relations (8) 
and (7), and circuit Eq. (5), we arrive at the following equation system

where the entry pj in vector p represents the complex pressure amplitude on the jth degree of freedom, and 
the N� × N� matrix All , the N� × Np matrix Alp , the N� × N t matrix Alt , the Np × N� matrix Apl , and the 
N t × N� matrix Atl have entries 

 respectively, and finally aIc = Bl/(ρc) and aII = R + iωL.

Design definition by filtering
To enable gradient-based optimization, we relax αh to allow intermediate values that neither represent solid 
material nor air. We employ a combination of a penalization and an appropriate filtering approach to enforce 
extreme values of αh and ensure size control. In this section, we detail our definition and handling of the design 
variables using a non-linear filtering method. The morphological dilate and erode operators are approximated by 
these non-linear filters. More precisely, to use gradient-based optimization, we approximate the morphological 
operators with the harmonic-mean based filters suggested by Svanberg and Svärd25, and we use the fW-mean 
based filtering framework of Wadbro and Hägg26.

For the optimization, �d is our design domain. We define the set of admissible design variables as

where d is a Nd × 1 vector that defines the material distribution inside �d before filtering.
For the filtering, we use the extended domain �f = �d ∪�s ∪�a illustrated in Fig. 4 (right). Here, �s is a 

domain occupied by solid, and �a = �t ∪�p is a domain occupied by air. The uniform mesh of square elements 
is extended to �f  using elements of the same size as those in � . The N elements of �f  are sorted so that those in 
�d come first, �s second, and �a last.

We assemble a weight matrix W r = D−1
r Gr , where Gr is a neighborhood indicator matrix with entries

and Dr = diag(Gr1N ) , where 1N = (1, 1, . . . , 1)T ∈ R
N . In expression (13), xi and xj are the centroids of elements 

i and j in �f  , respectively, and 
∥
∥xi − xj

∥
∥ is the distance between xi and xj . In addition, we define the functions

where β > 0 is a parameter. We denote the inverse functions of fEβ
 and fDβ

 by f −1
Eβ

 and f −1
Dβ

 , respectively.
Now, we define the discrete harmonic erode and dilate operators that act on an N × 1 vector η with entries 

0 ≤ ηN ≤ 1 as

(10)
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,
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0 else,
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respectively. Here, f
Eβ

=
[
fEβ

(η1), fEβ
(η2), . . . , fEβ

(ηN )
]T and f

Dβ
=

[
fDβ

(η1), fDβ
(η2), . . . , fDβ

(ηN )
]T . (To 

keep the discussion simple, we refer to the harmonic-mean based approximate morphological operators as 
harmonic followed by the name of the morphological operator that they approximate.) Parameter β governs 
the properties of the filter, which approaches a linear blurring filter in the limit β → +∞ . The non-linearity of 
the filter increases as β decreases. We thus will refer to β as the non-linearity parameter. In the limit β → 0 , the 
action of the filters tends to that of the corresponding morphological operators. Using the harmonic dilate and 
erode operators in a series, we define the harmonic close operator on Nd × 1 vector d as

where INd is the identity matrix of size Nd × Nd . More precisely, in expression (16), first we expand the design to 
the extended domain �f  , then we apply the filter on �f  , and finally we extract the filtered entries of �d . Finally, 
we define (cf. Remark 2) the vector F (d) , which holds the element values of αh in �d , as

The optimization problem
The radiated power of the loudspeaker through the output port is the integral of the Poynting vector over the 
port. In the discretized case, the radiated power becomes

where the overline denotes complex conjugate, x is the solution to Eq. (10), x∗ is the Hermitian transpose of x , 
and, using the same blocking as in Eq. (10),

A suitable way to evaluate the performance of this type of loudspeaker is to assume the loudspeaker to be placed 
on an infinite floor in an anechoic chamber and measure the sound pressure level (SPL) in dB at 1m in front of 
the output port, for a given input voltage. Since the SPL is proportional to the logarithm of the radiated power, 
we base our design objective on this quantity. More precisely, to optimize for a set of frequencies f1, f2, . . . , fm , 
we define the objective function

where Pfi is the output power evaluated according expression (18) in the case where x solves governing Eq. (10) 
for angular frequency ω = 2π fi and physical design αh with element values F (d) , as defined in expression (17), 
in �d . To solve the optimization problem, we use the method of moving asymptotes (MMA) by  Svanberg27. Since 
the MMA expects a minimization problem, we write the optimization problem as

By relaxing the material indicator function optimization, we obtain physical designs with intermediate values. 
As previously stated, this is undesirable; thus we deal with intermediate values using penalization and filtering. 
To suppress the intermediate values in d , we add a quadratic penalty  term28 to the objective function, which 
results in the problem

where ζ is a positive penalty parameter.

Sensitivity Analysis
The MMA algorithm requires the gradients of the objective function with respect to design variables. We 
employ the adjoint variable method because of its efficiency; it computes the full gradients at the cost of (at 
most) one extra finite element analysis. Here, we present the sensitivity analysis for the radiated power given 
by expression (18).

(15)Er,β(η) = f −1
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(
W r f Eβ

(η)
)
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Perturbing αh and using that B is real and symmetric, we obtain a first order perturbation of the radiated 
power given by

Similarly, the first order perturbation of Eq. (10) is

Pre-multiplying Eq. (24) with an arbitrary vector z∗ , we obtain

Now we select z as the solution to the so-called adjoint equation

which yields that x∗B = z∗A , which substituted into expression (23) gives

where last equality follows from expression (25).
Recall that αh is element-wise constant. Letting �n be the nth element in �d—so an is the element value of αh 

in �n—expression (27) implies that

where E(n) has entries

if 1 ≤ i, j ≤ N� , else e(n)ij = 0 . Expression (28) provides sensitivities with respect to the physical design a , which 
in turn depends on design variables d , which are the ones updated by the MMA algorithm, through a compound 
function involving the non-linear filter, as detailed in expression (17). Using the chain rule, as presented in detail 
by Hägg and  Wadbro29 together with expression (28), we obtain the gradient of P with respect to d.

Numerical experiments and results
Consider a loudspeaker box (recall Fig. 3 (left)) with dimensions w × h× d = 80 cm× 100 cm× 60 cm . A 
baffle of dimensions w × d = 80 cm× 60 cm , containing an 18-inch transducer, separates the upper and the 
lower box. The lower box has dimensions w × hl × d = 80 cm× 70 cm× 60 cm . An output port of dimensions 
hp × d = 30 cm× 60 cm is located at the lower left of the loudspeaker. The electromechanical parameters of the 
transducer, given in Table 1, are typical for a commercial 18-inch driver.

Two types of numerical experiments are performed. First, the loudspeaker is optimized for single frequen-
cies ranging from 20 to 100Hz . Second, it is optimized for selected frequency bands. The hybrid model is 
implemented in MATLAB, and all experiments are performed using a finite element discretization with 280 × 
320 square elements, which yields a side length of each element of 2.5mm . With this resolution, we solve for 
363,502 unknowns in Eq. (10).

We start the optimization with d = (1, 1, . . . , 1)T ∈ R
Nd as initial guess, that is, with no solid material inside 

the design domain �d . We employ a continuation technique, in which the penalty and non-linearity parameters 
are gradually increased and decreased, respectively. Initially, the material distribution problem is solved with a 
very small value of the penalty parameter ( ζ = 10−4 ). The MMA algorithm computes the residual norm of the 
Karush–Kuhn–Tucker (commonly referred to as the KKT or the first-order optimality) conditions. We increase 
the penalty parameter and use the previous solution as the initial guess when the KKT residual norm is less than 
10−2 times the initial KKT residual norm. The intermediate values of d become expensive as the penalty increases 
with each step. As a result, when the penalty parameter is sufficiently large, all entries of d are essentially 0 or 1 

(23)δP = ℜ
{
x∗B δx

}
.

(24)δAx + A δx = 0.

(25)z∗δAx + z∗A δx = 0.

(26)A∗z = Bx,

(27)δP = ℜ
{
z∗Aδx

}
= −ℜ

{
z∗δAx

}
,

(28)
∂P

∂an
= −ℜ

{
z∗E(n)x

}
,

(29)e
(n)
ij = c2

∫

�n

∇ϕi · ∇ϕj − ω2

∫

�n

ϕiϕj

Table 1.  Electromechanical properties of the 18 inch transducer.

Parameter Value

Mechanical compliance Cms (mm/N) 0.22

Moving mass Mmd (g) 150.0

Mechanical resistance Rms (kg/s) 6.0

Bl Factor (N/A) 22.6

Voice coil resistance R (�) 5.5

Voice coil inductance L (mH) 1.5
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at optimum. For the non-linear filter, we start with a higher value of the non-linearity parameter ( β = 10 ) and 
decrease the non-linearity parameter whenever we increase the penalty parameter. Throughout the optimization, 
the relation ζ = 10−3β−1 holds.

To evaluate the performance of the loudspeaker, we use  SPL1 m. Assuming that the loudspeaker is placed on 
an infinite sound-hard floor, the quantity  SPL1 m is defined as

where p1m is the pressure at the floor 1m in front of the output port, and po = 20µPa is the reference pressure 
amplitude for computing SPL.

Furthermore, we consider the layout with an empty lower box as our reference loudspeaker, which is also the 
initial guess for the optimization. For all the results, we compare the  SPL1 m of all the optimized designs (single 
as well as multi-frequency optimization) with the  SPL1 m of the reference loudspeaker. To compute the  SPL1 m, 
we use V = 1V as the input voltage to the amplifier in all cases.

Single-frequency optimization
The resulting designs and corresponding frequency responses for single-frequency optimizations using target 
frequencies ranging from 20 to 80Hz are shown in Fig. 5. The optimized loudspeakers’ frequency response (solid 
blue line) is compared to the reference loudspeaker’s frequency response (dashed black line). The reference curve 
has a peak at 60Hz . We note that the frequency response of the optimized design yields a peak at the frequency 
subject to optimization. Here, the optimization algorithm tunes the resonance frequency of the system to the 
frequency subject to optimization. Figure 5a,b show that the peak  SPL1 m of the designs for the lower target fre-
quencies (20 and 40 Hz ) is lower than the peak  SPL1 m of the reference loudspeaker. However, the peak  SPL1 m of 
the designs for the higher target frequency (80 Hz ) is close to that of the reference curve (Fig. 5d). As we already 
have a peak at 60Hz , the optimization algorithm for this target frequency does not put solid material (Fig. 5c) 
inside the lower box, and the frequency response overlaps the reference curve. This suggests that the initial 
design (empty lower box) is a local minimum to the optimization problem for 60 Hz . The improvement in the 
efficiency at the target frequency is between 0 dB (for 60Hz ) and +10 dB (for 80Hz ). At the lowest frequency in 
the range, 20Hz , the peak of frequency response is at 86.5 dB . This corresponds to an increase in efficiency of 
approximately +11.5 dB at 20Hz compared to the empty box. Here, the single-frequency optimization is only 
used for preliminary investigation. The main objective of this study is to perform multi-frequency optimization 
of the loudspeaker enclosure presented in the following section.

Multi-frequency optimization
Here, we optimize the loudspeaker over single-octave bands, one-and-a-half octave bands, and a double-octave 
band. The optimization frequencies are logarithmically spaced within the design frequency band. That is, 
fi = Fstart2

i/12 , for i = 0, 1, 2, . . . , n− 1 , with Fstart being the lowest frequency in the range, and n = 13 , n = 19 , 
or n = 26 if the frequency band is a single octave wide, one-and-a-half octave wide, or a double octave wide, 
respectively.
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Figure 5.  Single-frequency optimization: The figures above the graphs show the material distribution inside 
the domain � after optimization. The boundary at the top indicates the 18-inch transducer, and the boundary at 
the lower left is the output port. In the graphs, the dashed black line is the frequency response of the reference 
loudspeaker (empty lower box), and the solid blue line is the frequency response of the optimized system for the 
corresponding frequency.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21248  | https://doi.org/10.1038/s41598-023-46170-4

www.nature.com/scientificreports/

For the single octave band optimizations, the frequency bands are 35–70 Hz , 40–80 Hz , 45–90 Hz , and 
50–100 Hz . The optimized loudspeaker designs along with their frequency responses are shown in Fig. 6a–d. The 
frequency responses in Fig. 6a,b peak at 55 Hz and 60 Hz, respectively for bands 35–70 Hz and 40–80 Hz . There 
is little improvement in the output power for lower frequencies for frequency band 35–70 Hz . The frequency 
response largely overlaps the reference curve for frequency band 40–80 Hz . Here, the optimization algorithm 
adds very little solid material inside the lower box; that is, the optimization shows that the empty (initial) design 
is close to a local minimum for the targeted frequency band. However, for the last two bands, which are, 45–90 
Hz and 50–100 Hz , the frequency responses in Fig. 6c,d show that there are improvements in the output power 
over the full frequency band subject to optimization.

The frequency bands for the one-and-a-half octave band optimization are 30–85 Hz , 32.5–92 Hz , 35–99 Hz , 
and 37.5–106 Hz . Fig. 6e–h show the results. The frequency response overlaps the reference curve in Fig. 6e, 
and there is no improvement in performance. Again, the optimized design is very similar to the initial design, 
with very little solid material within the design domain. This indicates that the initial design is close to a local 
minimum. To avoid this minimum, we chose a slightly higher starting frequency and considered the frequency 
band 32.5–92 Hz . The frequency response in Fig. 6f demonstrates an improved bandpass design with a larger, 
more distinct pass band compared to the 30–85 Hz band. The results for 35–99 Hz and 37.5–106 Hz , shown in 
Fig. 6g,h, are qualitatively similar.

For the double-octave band optimization, the frequency band is 30–120 Hz , and the results are shown in 
Fig. 7. In comparison to the one-and-a-half octave band, the frequency response shows a wider bandpass design 
and slightly better performance for low frequencies than the reference curve.
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Figure 6.  Multi-frequency optimization for single and one-and-a-half octave bands: The figures above the 
graphs show the material distribution inside the domain � after optimization. The boundary at the top indicates 
the 18-inch transducer, and the boundary at the lower left is the output port. In the graphs, the dashed black 
line is the frequency response of the reference loudspeaker (empty lower box), and the solid blue line is the 
frequency response of the optimized system for the selected frequency range.
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Comparing Fig. 6c with 6g and 6d with 6h, the single octave band results look superficially better than the 
one-and-a-half octave results. This is due to the higher SPL peak achieved inside the target frequency range for 
the latter, which compensates for the lower levels outside the target frequency band. The one-and-a-half octave 
band objective function is indeed worse for the single-octave-band design, compared over the corresponding 
one-and-a-half octave band. Above the design frequency band, the SPL curve can behave unpredictably, which 
is in analogy with for instance filter design or high order polynomial interpolation.

Discussion
Single-frequency optimization
As previously stated, by placing solid material into the design domain, the optimization algorithm tunes the 
system’s resonance frequency to the frequency under consideration. It should be noted that tuning the resonance 
frequency to the optimization target frequency is accomplished in two ways, depending on whether the target 
frequency is below or above the resonance frequency for the reference design. In addition to the results presented 
in Fig. 5, we performed additional experiments targeting other frequencies. For all our experiments, optimiz-
ing for lower frequencies yields a reduction in the port size while optimizing for higher frequencies results in a 
reduction in the lower box volume.

The lower box acts as a Helmholtz  resonator30 because the wavelength is large compared to the dimen-
sions of the lower box. The standard lumped model for the resonance frequency of the Helmholtz resonator is 
(2π)−1c

√
Ap/(LpVl) , where Ap and Lp are the area and effective acoustic length of the output port, respectively, 

and Vl is the volume of the lower box. According to Fig. 5, there is more material inside the lower box for 20 Hz 
as compared to 40 Hz, and reducing the volume of the lower box increases the resonance frequency, and vice 
versa. It seems that a slightly increased opening could be compensated by a reduction in volume. It should be 
noted that the single-frequency case tends to invoke extreme designs when the target frequency is pushed toward 
the physically lower limit. The designs of Fig. 5a,b contain narrow channels which would likely induce nonlinear 
effects for appreciable sound levels. If, for some reason, a single frequency subwoofer would be of practical inter-
est, a design constraint precluding too narrow channels would be advisable.

Multi-frequency optimization
To achieve a bandpass design, a dividing wall appears in the lower box for the single octave bands 45–90 Hz and 
50–100 Hz , as well as for the one-and-a-half-octave bands 32.5–92 Hz , 35–99 Hz , 37.5–106 Hz , and the double 
octave-band 30–120 Hz . The design can be seen as a cascade of two Helmholtz resonators. A lumped model 
analysis suggests that this loudspeaker box corresponds to a sixth-order acoustic filter with a high-frequency 
roll-off of 36 dB per octave. This is the limit behavior occurring for frequencies well above the design frequency 
band. The even faster roll-off seen for the presented designs is governed by the quality factor of the Helmholtz 
resonators. The lumped filter cascade model assumes that the filter elements somehow retain their acoustical 
identity when connected. This assumption can be far from accurate due to the near field interaction between the 
resonators in the subwoofer and can be interpreted as one culprit for the failure of the lumped model.

Validation of the hybrid model
Recall that for computational efficiency, we use a hybrid model, where we assume planar symmetry in the acoustic 
pressure along the z-axis in the lower box. It is reasonable to ask how accurate this assumption is, particularly 
when solid material is placed inside the lower box. To assess this issue, we consider the design optimized for 
the one-octave design (45–90 Hz ), depicted in Fig. 6c. For this design, we use COMSOL Multiphysics to imple-
ment a full 3D model, as detailed by Bokhari et al.23, with second-order tetrahedral elements with a maximum 
side length of 0.05 m. The 3D model uses a body-conforming mesh and sound-hard boundary conditions at the 
interfaces between air and solid material in the lower box. Figure 8 shows the loudspeaker’s frequency response 
computed using the hybrid and the 3D model. This result validates the fidelity of the hybrid model.
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Figure 7.  Multi-frequency optimization for double-octave band: Left: Figure shows the material distribution 
inside the domain � after optimization. The boundary at the top indicates the 18-inch transducer, and the 
boundary at the lower left is the output port. Right: In the graph, the dashed black line is the frequency response 
of the reference loudspeaker (empty lower box), and the solid blue line is the frequency response of the 
optimized system for the selected frequency range.
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Concluding remarks
In this article, we have introduced a material distribution based topology optimization method for the interior 
structure of a loudspeaker cabinet. An important development, without which the optimization likely would 
not be computationally feasible, is the previously reported hybrid 2D–3D  model23. The presented results are 
computed for the particular case study of a bandpass subwoofer; note that the final layouts will depend on the 
parameters of the transducer, the sizes of the front and back chambers, and the targeted frequencies. For the 
parameters used in this study, the empty box and the optimized designs are topologically equivalent. However, 
we did not need to impose such a restriction. By using topology optimization, the resulting design may have a 
different topology than the empty box. That is, the method opens the possibility to find conceptually new designs. 
Moreover, the methodology is general and can be used to design the interior cabinet also for other use cases.

The obtained layouts are crisp and well-defined; however, to produce a commercially viable device, it would 
likely be necessary to simplify the design into one containing a few simple flat pieces. By parameterizing a collec-
tion of such pieces, additional so-called sizing optimization could be carried out in order to fix these parameters.

For our particular case study, we successfully optimized the interior layout of the cabinet for single as well 
as multiple frequencies. The following are the key characteristics of the loudspeaker designs presented here:

• In the single-frequency optimization, the optimizer tunes the loudspeaker’s cabinet into a resonator for the 
corresponding frequency.

• In the multi-frequency optimization, there is very little or no improvement in performance for low frequen-
cies compared to the frequency response of the reference loudspeaker.

• To achieve bandpass designs in the multi-frequency optimization, the optimizer converts the loudspeaker’s 
cabinet into a cascade of Helmholtz resonators.

Data availability
 The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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