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Abstract

In this thesis, the main objective is to study the presence of Gibbs phenomenon and the
Gibbs constant in Fourier-Legendre series. The occurrence of The Gibbs phenomenon is
a well known consequence when approximating functions with Fourier series that have
points of discontinuity. Consequently, the initial focus was to examine Fourier series
and the occurrence of Gibbs phenomenon in this context. Next, we delve into Legendre
polynomials, showing their applicability to be expressed as a Fourier series due to their
orthogonality in [−1, 1]. We then continue to explore Gibbs phenomenon for Fourier-
Legendre series. The findings proceeds to confirm the existence of the Gibbs phenomenon
for Fourier-Legendre series, but most notebly, the values of the error seem to converge
to the same number as for Fourier series which is the Gibbs constant.
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Sammanfattning

I denna uppsats är målet att studera förekomsten av Gibbs fenomen och Gibbs
konstanten i Fourier-Legendre-serier. Gibbs fenomenet är en välkänd konsekvens när
man approximerar funktioner med Fourier-serier som har punkter av diskontinuitet.
Det ursprungliga fokuset var därför att undersöka Fourier-serier och förekomsten av
Gibbs fenomen i detta sammanhang. Därefter går vi in på Legendre-polynom och visar
deras tillämplighet att uttryckas som en Fourier-serie på grund av deras ortogonalitet i
intervallet [−1, 1]. Vi fortsätter sedan att utforska Gibbs fenomen för Fourier-Legendre-
serier. Resultaten bekräftar förekomsten av Gibbs fenomenet för Fourier-Legendre-serier
och anmärkningsvärt verkar värdet för felet konvergera till samma värde som för Fourier-
serier, vilket är Gibbs konstanten.
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Chapter 1

Introduction

In the early 1800’s, Joseph Fourier caused major controversy in the scientific world by
claiming that an arbitrary function could be written as an infinite series of trigonometric
functions. His claim was that a given function defined on an interval can be expanded in
terms of an infinite sum of sines and cosines [1].

The aim was to solve partial differential equations, more precisely, to find solutions to
the heat equation. At the time, Fourier’s approach was considered nonsense but has later
been developed into one of the oldest and most major part of mathematical analysis. The
study of Fourier series, also known as harmonic analysis has large applications in areas
such as signal processing, quantum mechanics, neuroscience or any other event with a
recurrent nature. However, there is an undesirable consequence of these approximations
when truncating the series, namely Gibbs Phenomenon.

The Gibbs phenomenon could roughly be described as oscillations, or overshoots and
undershoots that occur near the discontinuities of a function when approximated by
a Fourier series. This phenomenon was first discovered by Henry Wilbraham in 1848
[2], but it didn’t get a lot of attention and was largely forgotten until the late 1800s
when Josiah W. Gibbs discussed its existence [3]. Initially, Gibbs phenomenon was
discussed predominately in its relation to the trigonometric system. However, research
demonstrated that this phenomenon extends beyond this system.

In 2010, researchers investigated the Gibbs phenomenon for Fourier-Bessel series
expansions. The findings of this research indicated that the Gibbs phenomenon, does
indeed emerge in Fourier-Bessel series expansions and exhibits similar behaviour to the
Gibbs phenomenon observed in the trigonometric system. More interestingly, the research
highlighted that the amplitude of the over- and undershoots near jump discontinuities in
the truncated Fourier-Bessel series tends toward a distinct limit, mirroring the behavior
of the Gibbs phenomenon in Fourier series.
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CHAPTER 1. INTRODUCTION

For Fourier series, this limit is often referred to as ”Gibbs Constant”, and can be
computed by

2c

π

∫ π

0

sin(x)
x

dx− c

where c is one-half the magnitude of the jump discontinuity. It is indeed intriguing that
this constant would also appear in an entirely different series expansion, characterized
by its own unique set of functions and properties.

In the conclusion of this research, the question was raised of whether the Gibbs constant
is also present in Fourier-Legendre series as it is for Fourier-Bessel series[4]. This thesis
delves into this matter to explore the existence of the Gibbs phenomenon and the Gibbs
constant in Fourier-Legendre series.

This thesis is divided into 6 chapters:

In Chapter 2 we present a set of definitions and properties of Fourier Series and lay the
groundwork for the thesis, that will be relevant in later chapters. Additionally,we explore
Gibbs phenomenon graphically and analytically for the general Fourier Series.

In Chapter 3 we discuss the Legendre polynomials, exploring their orthogonality while
also introducing and defining the Fourier-Legendre expansion.

In Chapter 4 we finish this paper with a numerical experiment using python, exploring
the Gibbs phenomenon for Fourier-Legendre series.

Chapter 5 compiles some computations done throughout the thesis, while Chapter 6
presents the python code that was used for the numerical experiments.
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Chapter 2

Gibbs Phenomenon for Fourier
Series

2.1 Fourier series: Definition and Properties
A real valued function can be expressed as a Fourier Series given it is periodic and piece-
wise continuous. We give a formal definition.

Definition 2.1.1. Let f(x) be an arbitrary integrable periodic function defined on
(−l, l), l > 0. Then the Fourier series associated to f is

a0
2

+
∞∑
n=1

(
an cos

nπx

l
+ bn sin

nπx

l

)
where an and bn are the Fourier coefficients given by

an =
1

l

∫ l

−l

f(x) cos nπx
l

dx, n = 0, 1, 2, ...

bn =
1

l

∫ l

−l

f(x) sin nπx

l
dx, n = 1, 2, 3, ... .

Some basic important properties of the Fourier series worth noting include:

• Periodicity: The Fourier Series of a periodic function f is also periodic.

• Linearity: If f and g are two periodic functions and Ff and Gg is their respective
Fourier series, then αf + βg ∼ αFf + βGg.

• Even and odd symmetry: The Fourier series of a periodic odd(even) function
includes only sine(cosine) terms.
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CHAPTER 2. GIBBS PHENOMENON FOR FOURIER SERIES

The issue of convergence in Fourier series is frequently of interest. That is, it is not
always immediately apparent what form of convergence, if any, is occurring. Throughout
this thesis, we assume every function to be regulated. A regulated function is a function
such that

f(x) =
f(x+) + f(x−)

2
,

where

f(x+) = lim
x→x+

0

f(x) ̸= ±∞

f(x−) = lim
x→x−

0

f(x) ̸= ±∞.

When addressing the convergence we have to examine the partial sum of the expansion.
Suppose that f is periodic, then the N :th partial sum SN of the Fourier series for f

is

SN(x) =
a0
2

+
N∑

n=1

(an cosnx+ bn sinnx) .

One of the most significant tools for representing the partial sum was introduced by Peter
Gustav Lejeune Dirichlet, a German mathematician and a student of Joseph Fourier. This
is known as Dirichlet’s integral form, and is derived in ”Fourier Analysis” by James S.
Walker(pp 45-48) from the N : th partial sum of the Fourier series for f at x = x0 [5]. It
is shown to be

SN(f ; xo) =
1

2π

∫ 2π

0

f(x0 + t)
sin
(
N + 1

2

)
t

sin t
2

dt,

Figure 2.1.1: The Dirichlet
Kernel.

where the function

DN(t) = 1 + 2
N∑

n=1

cosnt =
sin
(
N + 1

2

)
t

sin t
2

is called Dirichlet’s kernel.
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CHAPTER 2. GIBBS PHENOMENON FOR FOURIER SERIES

2.1.1 Orthogonal systems
The inner product of two vectors can be extended to functions as follows

Definition 2.1.2. A system (or set) of functions {gn}∞n=0 over the closed interval [−l, l]

is called orthogonal if∫ l

−l

gm(x)gn(x)dx = 0 if m ̸= n∫ l

−l

g2n(x)dx > 0 for each n ∈ Z+
0

If
∫ l

−l
g2n(x)dx = 1 for each n, then the set of functions {gn}∞n=0 is called an orthonormal

system.

Furthermore, an orthogonal system of functions is said to be complete if for all g which
is orthogonal to every function gn, we have that g = 0 for all n. In other words, for a set
of functions to form a complete orthogonal system, any function g that is orthogonal
to all functions gn in the set must be the zero function. This property is of great
importance since any set of functions {gn}n that form complete a orthogonal system
have a corresponding generalized Fourier series.

Definition 2.1.3. Let {gn}n be an orthonormal set of functions over [−l, l], then the
generalized Fourier coefficient of a integrable function f is given by

cn =

∫ l

−l

f(x)gn(x)dx.

The generalized Fourier series for f is then

∞∑
n=0

cngn(x).
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CHAPTER 2. GIBBS PHENOMENON FOR FOURIER SERIES

2.2 Gibbs Phenomenon

It is well-established that when f is a piece-wise smooth function with a period 2l in a
closed interval devoid of discontinuity points, the Fourier series of f converges uniformly
for all values of x. Put simply, if x0 denotes a point where f is continuous, then the
Fourier series converges to f(x0) at x0. However, if x0 denotes a point of discontinuity
for f , then the Fourier series converges to the average of the right-hand and left-hand
limits of f at x0 [5]. That is,

a0
2

+
∞∑
n=1

(
an cos

nπx

l
+ bn sin

nπx

l

)
=

f(x+) + f(x−)

2
.

Nonetheless, this framework falls short in addressing the excessive oscillations observed
near a point of discontinuity while approximating a function using a finite number
of Fourier coefficients. Consequently, it becomes apparent that these oscillations are
indicative of approximation errors. Essentially, the occurrence of the Gibbs phenomenon
arises when points of discontinuity exist within the interval, and the series is truncated.
An interesting inquiry then arise, can we pick any point x0 within an interval and ensure
that a number α will consistently be confined in a given set. Additionally, is it possible
to ensure that the approximation error for a given point will not lead to α surpassing the
set, even when that point is a point of discontinuity?

Moving forward to address these inquiries, we examine the sawtooth function ϕ(x) defined
by

ϕ(x) =
π − x

2
, x ∈ (0, 2π)

and extend to R by periodicity 2π. Hence, ϕ(x) will have discontinuity points at
x = 0,±2π,±4π...

Lemma 2.2.1. The Fourier series of ϕ(x) is given by

∞∑
n=1

sin(nx)
n

x ̸= 0,±2π,±4π...

Proof. The function ϕ(x) is odd, so in essence we only need to find the Fourier coefficient
bn. However for the sake of being instructive, we compute all coefficients. For a0, we
have that

a0 =
1

2π

∫ 2π

0

(π − x)dx =
1

π

[
πx

2
− x2

4

]2π
0

= 0.

For an,

an =
1

2π

∫ 2π

0

(π − x) cos(nx)dx.
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CHAPTER 2. GIBBS PHENOMENON FOR FOURIER SERIES

We can solve this integral by applying Bernoulli’s formula, which states∫
u v dx = uv1 − u′v2 + u′′v3 − ...

Note that u is a polynomial function of x, thus the successive derivative for u will
eventually be zero. We have for u and v

u = π − x

u′ = −1

u′′ = 0.


v = cos(nx)
v1 =

sin(nx)
n

v2 =
− cos(nx)

n2 .

This gives us

1

2π

∫ 2π

0

(π − x) cos(nx)dx =
1

2π

[
(π − x)

sin(nx)
n

− (−1)
− cos(nx)

n2

]2π
0

= 0.

Lastly, for bn

bn =
1

2π

∫ 2π

0

(π − x) sin(nx)dx.

Once again we apply Bernoulli’s formula and
u = π − x

u′ = −1

u′′ = 0.


v = sin(nx)
v1 =

− cos(nx)
n

v2 =
− sin(nx)

n2 .

We get

1

2π

∫ 2π

0

(π − x) sin(nx)dx =

[
−(π − x)

cos(nx)
n

− (−1)
− sin(nx)

n2

]2π
0

=
1

2π

[
2π

n

]
=

1

n
.

Hence, the Fourier series of ϕ(x) is

a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx)) =
∞∑
n=1

sin(nx)
n

.
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CHAPTER 2. GIBBS PHENOMENON FOR FOURIER SERIES

A commonly encountered integral while studying the Gibbs phenomenon is the sine
integral [6], Si(x). It is given by the following definition

Si(x) =

∫ x

0

sin(t)
t

dt ∀x ∈ R.

Furthermore, this sine integral has its maximum and minimum at x = π, and x = −π

respectively. We can convince ourselves for this to be true, by simply applying the first
derivative test. We compute the derivative with respect to x and set it equal to zero

Si′(x) =
sin(x)
x

= 0.

Note that Si′(x) is equal to zero for integer multiples of π. Also, note that

Si′(x) > 0 for x ∈ (0, π)

Si′(x) < 0 for x ∈ (π.2π).

Essentially, this means that we have a maximum at x = π. Since Si(x) is odd, we have
that Si(−x) = −Si(x) and

Si(−π) ≤ Si(x) ≤ Si(π) ∀x ∈ R

Now, let G := Si(π). We now proceed to define the concept of the Gibbs set.

Definition 2.2.1. The Gibbs set of ϕ at x is the set consisting of all possible limits of
the sequence {Sn(ϕ; x+ δn)}∞n=1 where δn is a sequence such that δn

n→∞−→ 0

Theorem 2.2.2. For any α ∈ [−G,G] there exists {δn}∞n=1 with δn
n→∞−→ 0 such that

lim
n→∞

Sn(ϕ; δn) = α.

Consequently, this is false if |α| > G.

Proof. Let ϕ(x) be the sawtooth function previously defined. We have that

S ′
N(ϕ; x) =

N∑
n=1

cos(nx).

We recognize this as Dirichlet’s kernel and

S ′
N(ϕ; x) = DN(x)−

1

2
=

sin
((
N + 1

2

))
x

2 sin
(
x
2

) − 1

2
.

Using the fundamental theorem of calculus we have

SN(ϕ; x) =

∫ x

0

S ′
N(ϕ; t)dt =

∫ x

0

sin
((
N + 1

2

))
t

2 sin
(
t
2

) dt− x

2
.
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CHAPTER 2. GIBBS PHENOMENON FOR FOURIER SERIES

By substitution and Taylor development, we get that

SN(ϕ; x) =

∫ (N+ 1
2)x

0

sin(t)
t

dt+ ξN(x)

where
ξN(x) = O(|x|) (1)

for all N . For more details, please refer to the Appendix 5.1 and 5.2.

Since Si(x) is a continuous function, for any α ∈ [−G,G] we can select β ∈ [−π, π] such
that Si(β) = α. A visual argument is given in figure 2.2.1.

Figure 2.2.1: Si(β) = α.

Let δN = β

N+ 1
2

. Then

SN(ϕ; δN) =

∫ (N+ 1
2)δN

0

sin(t)
t

dt+ ξN(δN)

=

∫ β

0

sin(t)
t

dt+ ξN

(
β

N + 1
2

)
= Si(β) + ξN

(
β

N + 1
2

)
= α + ξN

(
β

N + 1
2

)
.

Because of (1) we have

ξN

(
β

N + 1
2

)
≤ C · |β|

N + 1
2

.

Taking the limit we get

lim
n→∞

Sn(ϕ; δn) = lim
n→∞

(
Si(β) + ξn

(
β

n+ 1
2

))
= α + 0 = α. (2)

13



CHAPTER 2. GIBBS PHENOMENON FOR FOURIER SERIES

Now, assume that α > G and that (2) holds. We then have

α = lim
n→∞

Sn(ϕ; δn) = Si(β) + lim
n→∞

ξn(δn) ≤ Si(π) + lim
n→∞

ξn(δn) ≤ G + lim
n→∞

C · |δn| = G,

which is a contradiction. A similar argument can be made for the case α < −G.

Now that we have established that for the function ϕ, the approximation error will
not cause SN(ϕ; x) to surpass the Gibbs set, we want to explore what this means for
an arbitrary piecewise smooth function g. We first want to know the behavior of the
partial sums when g does not possess any points of discontinuity. In other words, we are
interested in finding the outcome of

lim
n→∞

Sn(g; x+ δn)

for all δn with δn → 0. We can explore this matter from a broader perspective, entirely
unrelated to Fourier analysis.

Lemma 2.2.3. Let {gn} be a sequence of real-valued functions on a set A that converges
uniformly to g : A → R. Let {δn} be an arbitrary sequence with δn → 0 as n → ∞. For
any fixed x ∈ A there holds

gn(x+ δn) → g(x).

Proof. We know that gn → g uniformly, so given ϵ > 0, ∃N ∈ N such that ∀n ≥ N , we
have

|gn(x)− g(x)| < ϵ

2
∀x ∈ A. (3)

We also know that g is continuous, so we can choose a number M > 0 such that

|g(x+ δn)− g(x)| < ϵ

2
. (4)

whenever |δn| < M .

We then have that

|gn(x+ δn)− g(x)| = |gn(x+ δn)− g(x+ δn) + g(x+ δn)− g(x)|
≤ |gn(x+ δn)− g(x+ δn)|︸ ︷︷ ︸

(∗)

+ |g(x+ δn)− g(x)|︸ ︷︷ ︸
(∗∗)

.

(∗)|gn(x+ δn)− g(x+ δn)| < ϵ
2

because of (3),

(∗∗) since g(x+ δn) is continuous, we can choose M so that (4) holds.

Hence,

|gn(x+ δn)− g(x)| ≤ |gn(x+ δn)− g(x+ δn)|+ |g(x+ δn)− g(x)| < ϵ

2
+

ϵ

2
= ϵ.

14



CHAPTER 2. GIBBS PHENOMENON FOR FOURIER SERIES

Now, suppose that an arbitrary piecewise smooth function g(x) is discontinuous at
x0 ∈ (0, 2π). We define two new functions f(x) and λ(x) where we remove a discontinuity
point at x0 from g(x) using λ(x). Let

λ(x) =
d

π
ϕ(x− x0)

f(x) = g(x)− λ(x)

where ϕ(x) is the same function as previously defined and d = f(x+
0 )− f(x−

0 ).

From this setup, the following observations can be made:

• f is differentiable everywhere, most notably at the point x0;

• Since f is smooth in a closed interval, we have that Sn(f ; x+ δn) → f ;

• Linearity property gives us that Sn(g; x) = Sn(f + λ; x) = Sn(f ; x) + Sn(λ; x).

Consequently, if the function λ shows the Gibbs phenomenon at x0, then so does any
arbitrary function g(x).

Theorem 2.2.4. Let g be piecewise smooth, 2π periodic and discontinuous at x0 ∈ (0, 2π).
Let d = g(x+

0 )− g(x−
o ), then the Gibbs set for g at a point x0 is[

g(x0)−
|d|G
π

, g(x0) +
|d|G
π

]
.

Proof. Let δn be a sequence such that δn → 0, we then have

Sn(g; x0 + δn) = Sn(f ; x0 + δn) + Sn(λ; x0 + δn).

We already know that Sn(f ; x0 + δn) → f(x0). However it is not immediately apparent
what the convergence of Sn(λ; x0 + δn) is.

Hence, we look at the N :th partial sum for Sn(λ; x) using Dirichlet’s integral form

SN(λ; x) =
1

2π

∫ 2π

0

λ(x+ t)DN(t)dt

=
d

2π2

∫ 2π

0

ϕ(x− x0 + t)DN(t)dt.

But
SN(ϕ; x− x0) =

1

2π

∫ 2π

0

ϕ(x− x0 + t)DN(t)dt,

thus
SN(λ; x) =

d

π
SN(ϕ; x− x0).

15



CHAPTER 2. GIBBS PHENOMENON FOR FOURIER SERIES

Then by theorem 2.2.2, we can see that

Sn(λ; x0 + δn) =
d

π
Sn(ϕ; x+ δn)

n→∞−→ dα

π

where α ∈ [−G,G].

If we graph the function ϕ(x) alongside its corresponding Fourier series, we will see
oscillations around each discontinuity point developed by the approximation errors of
the partials sums.

N = 10. N = 20.

N = 50. N = 70.

Figure 2.2.2: Comparison of ϕ(x) and SN(ϕ;x) for different values of N .

Observing these graphs clearly reveals the oscillations occurring due to the approximation
errors. Importantly, it becomes evident that the oscillations, both above and below the
discontinuity point of the true function, persist even as the number of terms in the Fourier
series increases.
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CHAPTER 2. GIBBS PHENOMENON FOR FOURIER SERIES

N Overshoot Relative Error Execution time(Seconds)
10 1.7069 0.0433 0.1609
20 1.7756 0.0652 0.1657
50 1.8200 0.0793 0.1898
70 1.8288 0.0821 0.2076
N Undershoot Relative Error Execution time(Seonds)
10 -1.7069 0.0433 0.1609
20 -1.7761 0.0654 0.1657
50 -1.8117 0.0767 0.1898
70 -1.8241 0.0806 0.2076

Figure 2.2.3: Comparison of some numerical results for different values of N
- Fourier series - ϕ(x).

Figure 2.2.3 shows the over/undershoot in the vicinity of the discontinuity point x0 = 2π

and the relative error. The relative error is computed by

|Over/undershoot value - Maximum/minimum value for ϕ|
Magnitude of the jump discontinuity

where ϕmax = π
2
and ϕmin = −π

2
. Furthermore, an additional column has been included

in order to display the program’s execution time in seconds for each value of N .

Evidently, the errors in approximation tend to approach a value of around 9% relative
to the size of the jump discontinuity. More interestingly to note is that the over- and
undershoots does seem to converge towards Gibbs constant. If we denote the Gibbs
constant as κ, then κ for this function is equal to

κ =

∫ π

0

sin(x)
x

dx− π

2
≈ 0.2811.

Hence, if these oscillations do converge to the Gibbs constant, then we would
add/subtract κ to the maximum/minimum value. We can see that

ϕmax + κ ≈ 1.8519

ϕmin − κ ≈ −1.8519.

As can be seen from figure 2.2.3, this indeed appears to hold true. These convergence
results provide a compelling explanation for the upper and lower bounds of the Gibbs set.
In essence, it is the existence of this Gibbs constant that ensures that the approximation
errors of the truncated Fourier series will always be contained within the Gibbs set.
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Chapter 3

Legendre polynomials and
Fourier-Legendre Series

Harmonic functions of three variables, spherical harmonics, have proven invaluable in
solving a wide range of problems within natural sciences and engineering. Application
areas such as geosciences, astronomy, heat-transfer theory and quantum mechanics to
name a few, all have befitted from the study of spherical harmonics [7]. One of the
most important system of functions in spherical harmonics, is the Legendre polynomials.
Adrian-Marie Legendre, a french mathematician who lived from the mid-18th century
to the early 19th century discovered these polynomials when studying solutions to the
Laplace equation in spherical coordinates. These polynomials can be obtained through
the recursive formula:

P0(x) = 1,

P1(x) = x,

Pn(x) = (n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + xPn−1(x) = 0, n ≥ 1. (5)

Figure 3.0.1: The first five Legendre
polynomials.

Hence, the first five Legendre polynomials
are

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3).

18



CHAPTER 3. LEGENDRE POLYNOMIALS AND FOURIER-LEGENDRE SERIES

Notebly, each Pn(x) will always have its highest degree polynomial to be equal to n.
We can also see that if n is odd(even), then Pn(x) is an odd(even) function sharing the
odd/even symmetry of the trigonometric system.

To define the Legendre-Fourier series, we must first ensure the orthogonality of the
Legendre polynomials. Then by definition 2.1.4, we can form the Fourier series with them.
It is well known that Legendre polynomials are orthogonal over the interval [−1, 1]. We
prove their orthogonality using Legendre’s equation to our advantage, which the Legendre
polynomials provide a solution for.

Definition 3.0.1. The second-order ordinary differential equation

(1− x2)P ′′
n (x)− 2xP ′

n(x) + n(n+ 1)Pn(x) = 0 n ∈ Z+
0 (6)

is called Legendre’s equation.

Theorem 3.0.1. The Legendre polynomials are orthogonal over the interval [−1, 1] with
weight f(x) = 1, and satisfy

∫ 1

−1

Pm(x)Pn(x)dx =

{
0 m ̸= n

2
2n+1

m = n.

Proof. We begin by multiplying (6) with Pm(x)

(1− x2)P ′′
n (x)Pm(x)− 2xP ′

n(x)Pm(x) + n(n+ 1)Pn(x)Pm(x) = 0. (7)

Rewrite (6) for m and multiply with Pn(x), then subtract (6) from (7) and obtain the
expression

d

dx

[
(1− x2)P ′

m(x)Pn(x)− P ′
n(x)Pm(x)

]
+ (m− n)(m+ n+ 1)Pm(x)Pn(x) = 0. (8)

A more detailed calculation can be found in the Appendix 5.3.

If we Integrate (8) over [-1,1] we get

(m− n)(m+ n+ 1)

∫ 1

−1

Pm(x)Pn(x) = 0. (9)

Hence, if m ̸= n the Legendre polynomials are orthogonal.

We must now look at the case where m = n. We begin by replacing n by n − 1 in the
recursive formula (5), and then multiply the result with (2n+ 1)Pn and obtain

n(2n+ 1)P 2
n(x)− (2n− 1)(2n+ 1)xPn−1(x)Pn(x) + (n− 1)(2n+ 1)Pn−2(x)Pn(x) = 0.
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Multiply (5) once again with (2n − 1)Pn−1(x) and subtract the resulting equation from
the equation above and get

n(2n+ 1)P 2
n(x) + (n− 1)(2n+ 1)Pn−2(x)Pn(x)

− (n+ 1)(2n− 1)Pn+1(x)Pn−1(x)− n(2n− 1)P 2
n−1 = 0 n ≥ 2.

Once again, we integrate this equation over [−1, 1] and we have

n(2n+ 1)

∫ 1

−1

P 2
n(x)dx

+ (n− 1)(2n+ 1)

∫ 1

−1

Pn−2(x)Pn(x)dx

− (n+ 1)(2n− 1)

∫ 1

−1

Pn+1(x)Pn−1(x)dx

− n(2n− 1)

∫ 1

−1

P 2
n−1dx = 0.

The second and third terms are equal to 0 due to (9), and hence we get∫ 1

−1

P 2
n(x)dx =

2n− 1

2n+ 1

∫ 1

−1

P 2
n−1dx.

By iteration and induction we get for n ≥ 2∫ 1

−1

P 2
n(x)dx =

2

2n+ 1
.

A small proof of the last identity is given in Appendix 5.4. Furthermore, it can be
shown that the Legendre polynomials also form a complete orthogonal system. For a
comprehensive proof of this property, interested readers can refer to ”Fourier Analysis”
by James S. Walker, chapter 8, section 8 [5].

Now that we have established the orthogonality of Legendre polynomials over [−1, 1], as
stated in definition 2.1.4, we can form Fourier series with them.

Definition 3.0.2. Given a periodic function f(x) defined on [−1, 1], the Fourier-Legendre
series for f(x) is then

f(x) ∼
∞∑
n=0

cnPn(x)

where the coefficients cn are given by

cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x)dx.
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Gibbs Phenomenon for
Fourier-Legendre Series

We will now look at the truncated Fourier-Legendre series numerically, and try to spot
any similarities to the Gibbs phenomenon in Fourier series.

We go back to the the sawtooth function ϕ(x), but define it as

ϕ(x) =
π − x

2
, x ∈ [−1, 0)

and extent to [0, 1) by periodicity 1. This function has a discontinuity point at x0 = 0,
and should display the Gibbs phenomenon at this point. If we look at this function
and its corresponding Fourier-Legendre series strictly from a visual stand-point in figure
4.0.2, we can see that the approximation errors does indeed cause oscillations around the
discontinuity point.

N = 10. N = 20.
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N = 50. N = 70.

Figure 4.0.2: Comparison of ϕ(x) and ΛN(ϕ;x) for different values of N .

The rate of convergence appears to be slower in comparison to the Fourier series, as
evident from both figure 4.0.2 and figure 4.0.3 where the execution time was recorded.
Notably, while the execution times for the Fourier series remained consistently under one
second for all values of N , the Fourier-Legendre series increased quickly in execution time
as more terms were added in the series. A possible explanation for this could be the fact
that ϕ is neither even or odd, thus lacking the even or odd symmetry in the Legendre
polynomials in the interval [−1, 1]. Consequently, more Legendre polynomials needs to
be added to the approximation, leading to extended execution times. Thus, an argument
could be made that ϕ seem to be a well-behaved function for Fourier series, but not so
well-behaved for Fourier-Legendre series.

N Overshoot Relative Error Execution time(seconds)
10 1.9879 - 2.5272
20 2.0460 - 5.5980
50 2.0916 0.0426 20.0320
70 2.1059 0.0712 36.2811
N Undershoot Error Execution time(Seconds)
10 1.6537 - 2.5272
20 1.5956 - 5.5980
50 1.5500 0.0424 20.0320
70 1.5248 0.071 36.2811

Figure 4.0.3: Comparison of some numerical results for different values of N
- Fourier-Legendre series - ϕ(x).

Even if that would be the case, the approximation errors do still seem to converge to a
value of approximately 9% of the jump discontinuity, albeit at a slower rate. Once more,
we verify whether the oscillations converge towards the Gibbs constant or not.
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We have that ϕmax = 2.0703, ϕmin = 1.5712, so the distance of the jump is approximately
1
2
. If the over-/ and undershoots do converge towards the Gibbs constant, where

κ =
1

2π

∫ π

0

sin(x)
x

dx− 1

4
≈ 0.0447,

then they should converge towards a value of

ϕmax + κ ≈ 2.1150

for the overshoot and
ϕmin − κ ≈ 1.5265

for the undershoot.

We can see from figure 4.0.3 that this does indeed seem to be the case, which is rather
intriguing. When dealing with Fourier series, the emergence of this constant might not
be too surprising. Fourier series are approximations of periodic functions using the
trigonometric system. Consequently, when the Gibbs phenomenon gained recognition
it might have been expected that these oscillations would converge to a trigonometric
function as well. But by that reasoning, the truncated Fourier-Legendre series would be
expected to converge to a function incorporating Legendre polynomials, but this doesn’t
align with these results. Instead the oscillations converge to the same constant.

However, one might argue that this constant arises solely due to the behaviour of the
function ϕ, since we used ϕ for both Fourier-/ and Fourier-Legendre series. Hence, we
examine a simpler function.

Consider the step function f , defined as

f(x) =

{
1 − 1 < x < 0

−1 0 < x < 1.

Hence, we will find a point of discontinuity at x0 = 0. Figure 4.0.4 and 4.0.5 show the
graphical results and numerical results respectively.
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N = 10. N = 20.

N = 50. N = 70.

Figure 4.0.4: Comparison of step function and ΛN(ϕ;x) for different values
of N .

As expected, we can see from figure 4.0.4 the Gibbs phenomenon developing around
x0 = 0. Now, if these oscillations do converge towards the same Gibbs constant, which
for f is equal to

κ =
2

π

∫ π

0

sin(x)
x

dx− 1 ≈ 0.1789,

then the overshoot should tend to a value of

fmax + κ ≈ 1.1789

while the undershoot should tend to a value of

fmin − κ ≈ −1.1789.
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N Overshoot Relative Error Execution time(Seconds)
10 1.1868 0.0934 2.4684
20 1.1810 0.0905 5.6120
50 1.1795 0.0897 20.1862
70 1.1796 0.0898 35.9075
N Undershoot Error Execution time(Seconds)
10 -1.1868 0.0934 2.4684
20 -1.1810 0.0905 5.6120
50 -1.1795 0.0897 20.1862
70 -1.1796 0.0898 35.9075

Figure 4.0.5: Comparison of some numerical results for different values of N
- Fourier-Legendre series - Step function.

Observing the results from figure 4.0.5, it becomes apparent that the oscillations do
converge towards the Gibbs constant here as well. It is noteworthy that the step
function seem to converge to this value at a faster rate than the saw tooth function ϕ,
arguing it is a more well-behaved function for Fourier-Legendre series. It is remarkable
to see that despite the distinct characteristics of the two systems of functions - the
trigonometric system and Legendre polynomials - there is still a sense of unity. Although
these deductions were primarily drawn from numerical findings, it shows the need for
additional research where a more analytical approach is taken. A suggestion could be
that one would examine if there is a kernel similar to the Dirichlet kernel could be
formulated, and if so, does it exhibit the same type of behaviour? Additionally, it is
possible that Gibbs phenomenon simply relates to the nature of approximation itself. If
this is the case, it would be intriguing to explore whether the Gibbs constant emerges in
other methods of approximations.
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Chapter 5

Appendix , Computations

5.1 Sn(ϕ; x) =
∫ (n+ 1

2)x
0

sin(t)
t dt+ ξn(x)Sn(ϕ; x) =

∫ (n+ 1
2)x

0
sin(t)
t dt+ ξn(x)Sn(ϕ; x) =

∫ (n+ 1
2)x

0
sin(t)
t dt+ ξn(x)

We have

Sn(ϕ; x) =

∫ x

0

sin
(
n+ 1

2

)
t

2 sin t
2

dt− x

2
.

If we only look at the left term∫ x

0

sin
(
n+ 1

2

)
t

2 sin t
2

dt =

∫ x

0

sin
(
n+ 1

2

)
t

2 sin t
2

dt+

∫ x

0

sin
(
n+ 1

2

)
t

t
dt−

∫ x

0

sin
(
n+ 1

2

)
t

t
dt

=

∫ x

0

sin
(
n+ 1

2

)
t

t
dt+

∫ x

0

(
sin
(
n+ 1

2

)
t

2 sin t
2

−
sin
(
n+ 1

2

)
t

t

)
dt.

We then get by substitution

Sn(ϕ; x) =

∫ x

0

sin
(
n+ 1

2

)
t

t
dt+

∫ x

0

(
sin
(
n+ 1

2

)
t

2 sin t
2

−
sin
(
n+ 1

2

)
t

t

)
dt− x

2︸ ︷︷ ︸
ξn(x)

=

∫ (n+ 1
2)x

0

sin(t)
t

dt+ ξn(x).
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5.2 ξn(x) = O(|x|)ξn(x) = O(|x|)ξn(x) = O(|x|)

We have

ξn(x) =

∫ x

0

(
sin
(
n+ 1

2

)
t

2 sin t
2

−
sin
(
n+ 1

2

)
t

t

)
dt− x

2

=

∫ x

0

(
sin
(
n+

1

2

)
t

(
1

2 sin t
2

− 1

t

)
dt

)
− x

2
.

=

∫ x

0

sin
(
n+

1

2

)
t h(t)dt− x

2
.

Since sin
(
n+ 1

2

)
t ≤ 1 we only need to concern ourselves with h(t). We have that

|ξn(x)| =
∣∣∣∣∫ x

0

sin
(
n+

1

2

)
t h(t)dt− x

2

∣∣∣∣
≤
∫ x

0

|h(t)| dt+ |x|
2
.

Consider the Maclaurin expansion of h(t) when t is close to zero, we get

h(t) =
1

2 sin t
2

− 1

t
=

t− 2 sin t
2

2t sin t
2

=

t− 2

(
t
2
− ( t

2)
3

3!
+

( t
2)

5

5!
− ...

)
2t

(
t
2
− ( t

2)
3

3!
+

( t
2)

5

5!
− ...

)
=

t3

24
+ t5

1920
− ...

t2 − t4

24
+ t6

1920
− ...

=
t
24

+ t3

1920
− ...

1− t2

24
+ t4

1920
− ...

We can see that h(t) t→0−→ 0. Hence, h(t) is gonna be less than or equal to some constant
k and we have that

|ξn(x)| ≤
∫ x

0

|h(t)|dt+ |x|
2

≤
∫ x

0

k dt+
|x|
2

≤ k|x|+ |x|
2

= (k +
1

2︸ ︷︷ ︸
=C

)|x|

= C|x|.
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5.3 Orthogonality of Legendre polynomials calculationsOrthogonality of Legendre polynomials calculationsOrthogonality of Legendre polynomials calculations
We have the following expressions

(∗) (1− x2)P ′′
n (x)Pm(x)− 2xP ′

n(x)Pm(x) + n(n+ 1)Pn(x)Pm(x) = 0

(∗∗) (1− x2)P ′′
m(x)Pn(x)− 2xP ′

m(x)Pn(x) +m(m+ 1)Pm(x)Pn(x) = 0.

Subtract (**) with (*) yields

(1− x2)P ′′
m(x)Pn(x)− (1− x2)P ′′

n (x)Pm(x)− 2xP ′
m(x) + 2xP ′

n(x)Pm(x)

+m(m+ 1)Pm(x)Pn(x)− n(n+ 1)Pn(x)Pm(x) = 0

Factor out the expression

(1− x2) [P ′′
m(x)Pn(x)− P ′′

n (x)Pm(x)]− 2x[P ′
m(x)Pn(x)− P ′

n(x)Pm(x)]

+ (m− n)(m+ n+ 1)Pm(x)Pn(x) = 0.

Note that due to the chain rule, we have that

d

dx

[
(1− x2)(P ′

m(x)Pn(x)− P ′
n(x)Pm(x)

]
= (1− x2)

[
�������
P ′
m(x)P

′
n(x) + P ′′

m(x)Pn(x)−(((((((
P ′
n(x)

′Pm(x)− P ′′
n (x)Pm(x)

]
− 2x [P ′

m(x)Pn(x)− P ′
n(x)Pm(x)]

= (1− x2) [P ′′
m(x)Pn(x)− P ′′

n (x)Pm(x)]− 2x[P ′
m(x)Pn(x)− P ′

n(x)Pm(x)].

Thus, the expression becomes

d

dx

[
(1− x2)(P ′

m(x)Pn(x)− P ′
n(x)Pm(x)

]
+ (m− n)(m+ n+ 1)Pm(x)Pn(x) = 0.
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5.4 ∫ 1
−1 P

2
n(x)dx = 2

2n+1

∫ 1
−1 P

2
n(x)dx = 2

2n+1

∫ 1
−1 P

2
n(x)dx = 2

2n+1

We prove this equality by induction. We want to show that ∀n ≥ 2, we have that∫ 1

−1

P 2
n(x)dx =

2

2n+ 1
.

We use the fact that
∫ 1

−1
P 2
n(x)dx = 2n−1

2n+1

∫ 1

−1
P 2
n−1(x)dx.

We first check that the equality holds for n = 2. We get

2n− 1

2n+ 1

∫ 1

−1

P 2
n−1(x)dx =

3

5

∫ 1

−1

P 2
1 dx =

2

5

2

2n+ 1
=

2

5
.

Hence, the equality holds for n = 2. Assume that the equality also holds for n = k,
giving us

2k − 1

2k + 1

∫ 1

−1

P 2
k−1(x)dx =

2

2k + 1
.

For k + 1 we obtain

2(k + 1)− 1

2(k + 1) + 1

∫ 1

−1

P 2
k (x)dx =

2

2(k + 1) + 1

2k + 1

����2k + 3

∫ 1

−1

P 2
k (x)dx =

2

����2k + 3

⇔
∫ 1

−1

P 2
k (x)dx =

2

2k + 1
.
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Appendix , Python Code

6.1 Gibbs Phenomenon ϕ(x)ϕ(x)ϕ(x) - Fourier Series
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import time
4

5 ## Start recording time
6 start_time = time.time()
7

8 def phi(x, n):
9 return np.sum([np.sin(n*x)/n for n in range(1, n+1)])

10

11 def Fourier_phi(x):
12 return (np.pi - (x % (2 * np.pi))) / 2
13

14 x_vals = np.linspace(0, 10, 1000)
15 n_values = [70]
16

17 plt.figure(figsize=(10, 6))
18 for n in n_values:
19 y_vals = [phi(x, n) for x in x_vals]
20 plt.plot(x_vals, y_vals, label='N = 70', linestyle='dashed', color='

black')
21

22 y_F_vals = [Fourier_phi(x) for x in x_vals]
23

24 ## Find and mark the maximum point for phi(x)
25 x_range_max_f = x_vals[(x_vals >= 6.28) & (x_vals <= 6.36)]
26 y_range_max_f = [phi(x, n_values[0]) for x in x_range_max_f]
27 max_index_f = np.argmax(y_range_max_f)
28 max_x_f = x_range_max_f[max_index_f]
29 max_y_f = y_range_max_f[max_index_f]
30

31 ## Find and mark the minimum point for phi(x)
32 x_range_min_f = x_vals[(x_vals >= 5.5) & (x_vals <= 7)]
33 y_range_min_f = [phi(x, n_values[0]) for x in x_range_min_f]
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34 min_index_f = np.argmin(y_range_min_f)
35 min_x_f = x_range_min_f[min_index_f]
36 min_y_f = y_range_min_f[min_index_f]
37

38 ## Find and mark the maximum point for Fourier series
39 x_range_max_F = x_vals[(x_vals >= 6.17) & (x_vals <= 6.30)]
40 y_range_max_F = [Fourier_phi(x) for x in x_range_max_F]
41 max_index_F = np.argmax(y_range_max_F)
42 max_x_F = x_range_max_F[max_index_F]
43 max_y_F = y_range_max_F[max_index_F]
44

45 ## Find and mark the minimum point for Fourier series
46 x_range_min_F = x_vals[(x_vals >= 6.17) & (x_vals <= 6.30)]
47 y_range_min_F = [Fourier_phi(x) for x in x_range_min_F]
48 min_index_F = np.argmin(y_range_min_F)
49 min_x_F = x_range_min_F[min_index_F]
50 min_y_F = y_range_min_F[min_index_F]
51

52

53 ## Record the end time
54 end_time = time.time()
55

56 runtime = end_time - start_time
57 print(f"Runtime: {runtime:.4f} seconds")
58

59 ## Plotting
60

61 plt.plot(x_vals, y_F_vals , color='black ')
62 plt.title('Partial Sums of �(sin(nx)/n) and phi(x)')
63 plt.scatter(max_x_f, max_y_f, color='green', label=f'({max_x_f:.4f}, {

max_y_f:.4f})')
64 plt.scatter(min_x_f, min_y_f, color='blue', label=f'({min_x_f:.4f}, {

min_y_f:.4f})')
65 plt.scatter(max_x_F, max_y_F, color='purple', label=f'({max_x_F:.4f}, {

max_y_F:.4f})')
66 plt.scatter(min_x_F, min_y_F, color='orange', label=f'({min_x_F:.4f}, {

min_y_F:.4f})')
67 plt.xlabel('x')
68 plt.ylabel('y')
69 plt.legend()
70 plt.grid()
71 plt.show()
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6.2 Gibbs Phenomenon ϕ(x)ϕ(x)ϕ(x) - Fourier-Legendre
Series

1 import numpy as np
2 import scipy.special as sp
3 from scipy.integrate import fixed_quad
4 import matplotlib.pyplot as plt
5 import time
6

7 ## Start recording time
8 start_time = time.time()
9

10 ## Extract Legendre Polynomials
11 def legendre_polynomial(x, n):
12 return sp.legendre(n)(x)
13

14 def phi(x):
15 return (np.pi - (x%-1)) / 2
16

17 ## Compute the Fourier-Legendre coefficients and series
18 def fourier_legendre_coefficients(phi, N):
19 coefficients = []
20 for n in range(N + 1):
21 def integrand(x):
22 return phi(x) * legendre_polynomial(x, n)
23 coefficient , _ = fixed_quad(integrand , -1, 1, n=100)
24 coefficient *= (2 * n + 1) / 2
25 coefficients.append(coefficient)
26 return coefficients
27

28 N = 20
29 def fourier_legendre_expansion(x, coefficients):
30 expansion = 0
31 for n, coefficient in enumerate(coefficients):
32 expansion += coefficient * legendre_polynomial(x, n)
33 return expansion
34

35

36 coefficients = fourier_legendre_coefficients(phi, N)
37

38 x_interval = np.linspace(-0.9, 0.9, 1000)
39

40 y_interval_expansion = [fourier_legendre_expansion(x, coefficients) for x
in x_interval]

41

42 ## x-values for interval of interest (close to 0)
43 x_interval_interest = np.linspace(-0.5, 0.5, 1000)
44

45 y_interval_interest_expansion = [fourier_legendre_expansion(x, coefficients
) for x in x_interval_interest]

46

47
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48 ## Find and mark the maximum and minimum point for phi(x)
49 y_interval_original = [phi(x) for x in x_interval]
50 max_index_interval_original = np.argmax(y_interval_original)
51 min_index_interval_original = np.argmin(y_interval_original)
52 max_x_interval_original = x_interval[max_index_interval_original]
53 min_x_interval_original = x_interval[min_index_interval_original]
54 max_y_interval_original = y_interval_original[max_index_interval_original]
55 min_y_interval_original = y_interval_original[min_index_interval_original]
56

57 ## Find and mark the maximum and minimum point for Fourier-Legendre series
58 max_index_interval_interest_expansion = np.argmax(

y_interval_interest_expansion)
59 min_index_interval_interest_expansion = np.argmin(

y_interval_interest_expansion)
60 max_x_interval_interest_expansion = x_interval_interest[

max_index_interval_interest_expansion]
61 min_x_interval_interest_expansion = x_interval_interest[

min_index_interval_interest_expansion]
62 max_y_interval_interest_expansion = y_interval_interest_expansion[

max_index_interval_interest_expansion]
63 min_y_interval_interest_expansion = y_interval_interest_expansion[

min_index_interval_interest_expansion]
64

65

66 ## Record the end time
67 end_time = time.time()
68

69 runtime = end_time - start_time
70 print(f"Runtime: {runtime:.4f} seconds")
71

72 ## Plotting
73

74 plt.figure(figsize=(10, 6))
75

76

77 plt.plot(x_interval , y_interval_original , color='black ')
78 plt.plot(x_interval , y_interval_expansion , label='N = 20', linestyle='

dashed', color='black')
79 plt.scatter(max_x_interval_original , max_y_interval_original , color='red',

label=f'{max_x_interval_original:.4f}, {max_y_interval_original:.4f})')
80 plt.scatter(min_x_interval_original , min_y_interval_original , color='blue',

label=f'({min_x_interval_original:.4f}, {min_y_interval_original:.4f})
')

81 plt.scatter(max_x_interval_interest_expansion ,
max_y_interval_interest_expansion , color='green', label=f'({
max_x_interval_interest_expansion:.4f}, {
max_y_interval_interest_expansion:.4f})')

82 plt.scatter(min_x_interval_interest_expansion ,
min_y_interval_interest_expansion , color='purple', label=f'({
min_x_interval_interest_expansion:.4f}, {
min_y_interval_interest_expansion:.4f})')

83 plt.xlabel('x')
84 plt.ylabel('y')
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85 plt.title('Original Function and Fourier-Legendre Expansion ')
86 plt.legend()
87 plt.grid(True)
88 plt.show()
89

90 print(f"Maximum Point of Original Function: x = {max_x_interval_original:.4
f}, y = {max_y_interval_original:.4f}")

91 print(f"Minimum Point of Original Function: x = {min_x_interval_original:.4
f}, y = {min_y_interval_original:.4f}")

92 print(f"Maximum Point of Fourier-Legendre Expansion: x = {
max_x_interval_interest_expansion:.4f}, y = {
max_y_interval_interest_expansion:.4f}")

93 print(f"Minimum Point of Fourier-Legendre Expansion: x = {
min_x_interval_interest_expansion:.4f}, y = {
min_y_interval_interest_expansion:.4f}")
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6.3 Gibbs Phenomenon Step Function - Fourier-
Legendre Series

1 import numpy as np
2 import scipy.special as sp
3 from scipy.integrate import fixed_quad
4 import matplotlib.pyplot as plt
5 import time
6

7 ## Start recording time
8 start_time = time.time()
9

10 ## Extract Legendre Polynomials
11 def legendre_polynomial(x, n):
12 return sp.legendre(n)(x)
13

14

15 def f(x):
16 return np.where((0 < x) & (x < 1), -1, np.where((-1 < x) & (x < 0), 1,

np.nan))
17

18 ## Compute the Fourier-Legendre coefficients and series
19 def fourier_legendre_coefficients(f, N):
20 coefficients = []
21 for n in range(N + 1):
22 def integrand(x):
23 return f(x) * legendre_polynomial(x, n)
24 coefficient , _ = fixed_quad(integrand , -1, 1, n=1000)
25 coefficient *= (2 * n + 1) / 2
26 coefficients.append(coefficient)
27 return coefficients
28 N = 10
29 def fourier_legendre_expansion(x, coefficients):
30 expansion = 0
31 for n, coefficient in enumerate(coefficients):
32 expansion += coefficient * legendre_polynomial(x, n)
33 return expansion
34

35 coefficients = fourier_legendre_coefficients(f, N)
36

37 x_interval = np.linspace(-1, 1, 1000)
38

39 y_interval_expansion = [fourier_legendre_expansion(x, coefficients) for x
in x_interval]

40

41 ## x-values for interval of interest (close to 0)
42 x_interval_interest = np.linspace(-0.5, 0.5, 1000)
43

44 y_interval_interest_expansion = [fourier_legendre_expansion(x, coefficients
) for x in x_interval_interest]

45

46 y_interval_original = [f(x) for x in x_interval]
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47

48 ## Find and mark the maximum and minimum point for Fourier-Legendre series
49 max_index_interval_interest_expansion = np.argmax(

y_interval_interest_expansion)
50 min_index_interval_interest_expansion = np.argmin(

y_interval_interest_expansion)
51 max_x_interval_interest_expansion = x_interval_interest[

max_index_interval_interest_expansion]
52 min_x_interval_interest_expansion = x_interval_interest[

min_index_interval_interest_expansion]
53 max_y_interval_interest_expansion = y_interval_interest_expansion[

max_index_interval_interest_expansion]
54 min_y_interval_interest_expansion = y_interval_interest_expansion[

min_index_interval_interest_expansion]
55

56 ## Record the end time
57 end_time = time.time()
58

59 runtime = end_time - start_time
60 print(f"Runtime: {runtime:.4f} seconds")
61

62 ## Plotting
63 plt.figure(figsize=(10, 6))
64

65 plt.plot(x_interval , y_interval_original , color='black ')
66 plt.plot(x_interval , y_interval_expansion , label='N = 10', linestyle='

dashed', color='black')
67 plt.scatter(max_x_interval_interest_expansion ,

max_y_interval_interest_expansion , color='green', label=f' ({
max_x_interval_interest_expansion:.4f}, {
max_y_interval_interest_expansion:.4f})')

68 plt.scatter(min_x_interval_interest_expansion ,
min_y_interval_interest_expansion , color='purple', label=f'({
min_x_interval_interest_expansion:.4f}, {
min_y_interval_interest_expansion:.4f})')

69 plt.xlabel('x')
70 plt.ylabel('y')
71 plt.title('Original Function and Fourier-Legendre Expansion ')
72 plt.legend()
73 plt.grid(True)
74 plt.show()
75

76

77 print(f"Maximum Point of Fourier-Legendre Expansion: x = {
max_x_interval_interest_expansion:.4f}, y = {
max_y_interval_interest_expansion:.4f}")

78 print(f"Minimum Point of Fourier-Legendre Expansion: x = {
min_x_interval_interest_expansion:.4f}, y = {
min_y_interval_interest_expansion:.4f}")
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