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Abstract

In recent time, drones are everywhere. While commercial drones have shown great

potential for hobby enthusiasts, it has shown a greater potential in military use and

safeguarding. Currently, a significant amount of drones are being used for malicious

means, such as espionage and warfare. Because of this, these drones has to be

combated. Oneway to combat them is to use countermeasure drones. In this thesis, the

objective is to implement and evaluate the security capabilities of SROS2 in a simulated

environment. The thesis goal is to create a simulated environment alongwith two “ally”

drones with secure communication and one “enemy” drone that will try to eavesdrop

on their communication. Completing the thesis work was done by configuring a drone

network using ROS2’s subscriber-publisher model and the use of evaluating methods

such as Wireshark, tcpdump, and overhead performance tests to better understand

and form a clearer picture of the inner-workings of the security capabilities offered by

SROS2. The result yielded a simulated environment with three drones, where the “ally”

drones successfully communicated with each other and the “enemy” drone failed in

eavesdropping on the data travelling between them. SROS2’s security offered security

but also showcased a decrease in latency and throughput performance, compared to a

non-configured SROS2 network.
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Sammanfattning

Nu för tiden finns drönare överallt. Medan kommersiella drönare har visat stor

potential för hobbyentusiaster så har de också visat en större potential inom militär

användning och skydd. Under en senare tid så har drönare används för skadliga

ändamål, såsom spionage och krig. På grund av detta så måste dessa drönare

bekämpas. Ett sätt att bekämpa dem är att använda skydds-drönare. I detta

examensarbete är målet att implementera och utvärdera säkerhetsförmågan hos

SROS2 i en simulerad miljö. Målet är att skapa en simulerad miljö tillsammans

med två ”allierade” drönare med säker kommunikation och en ”fiende” drönare

som ska försöka avlyssna deras meddelanden. Examensarbetet gick till väga i form

av konfigurering av ett drönarnätverk med ROS2:s subscriber-publisher-modell och

utvärderingsmetoder som Wireshark, tcpdump, och “overhead” prestanda tester för

att bättre förstå och få en bättre bild av säkerhetsfunktionerna som erbjuds av SROS2.

Resultatet blev en simulerad miljö med tre drönare, där de ”allierade” drönarna

framgångsrikt kommunicerade med varandra och ”fiende” drönare misslyckades med

att avlyssna data som färdades mellan dem. SROS2 erbjuder säkerhet men också visar

en minskning i latens och genomströmnings-prestanda jämfört med en okonfigurerad

SROS2 nätverk.

Nyckelord

Högskoleingenjör examensarbete, Drönare, Kommunikation, Säkerhet
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Acronyms

DDS Data Distribution Service

DoS Denial of Service

IoD Internet of Drones

MiTM Man-in-the-middle

ROS1 Robot Operating Systems

ROS2 Robot Operating Systems 2

SROS2 Secure Robot Operating Systems 2

UAV Unmanned Aerial Vehicle

SSL Secure Sockets Layer
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Chapter 1

Introduction

1.1 Background

Drones, or Unmanned Aerial Vehicle (UAV)s, are airborne vehicles with autonomous

capabilities. They were first used by the military during World War 1 as part of their

training practice and has since then turned into a vehicle more synonymous with

warfare, transportation, and surveillance [1]. Drones became most synonymous with

transportation in 2013 when the concept of Amazon Prime Air was first talked about,

which made drones mainstream1 [2]. Commercial drones opened up new possibilities

for hobbyists that has never been seen before, albeit like a double-edged sword, this

also opened up a new way for actors with malicious intent to harm others.

Indeed, security has become more important and talked about than ever in

contemporary society with the introduction of commercial drones. Because of this,

government and military has invested in producing countermeasures like nets, lasers,

opposing drones, and birds to combat drones to varying degree [3–5]. Drones has

proved to be a valid countermeasure against opposing drones, but are liable to being

hacked or eavesdropped as the connection between the operator and the drone can be

exploitable if weakly secured.

In regards to safeguarding drones, one way of going about this is to program them

using SROS2 [6]. SROS2 is a middle-ware that adds security like Secure Sockets

1An idea that has become regarded as normal or conventional.
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CHAPTER 1. INTRODUCTION

Layer (SSL) [7] and Transport Layer Security (TLS) [8] on top of the base tools from

ROS2 [9] like drivers and state-of-the-art algorithms that are tailor-made for creating

robot applications. While it is possible to configure drones usingROS2 and test them in

real life, it is not recommended as it costs more than to simply simulate the tests in an

appropriate environment. One environment that supports ROS2-configured drones

is Airsim [10]. The AirSim plugin for Unreal Engine is the obvious choice to go for

when working with drones as it specializes in simulating drones and cars, and allows

cross-platforming for more flexibility.

1.2 Problem description

UAV play an increasingly important role in current society as their importance in

multiple fields is undeniable. With the aid of opposing drones, malicious drones can

be combated as mentioned in Section 1.1. While a swarm of opposing drones can

be used for safeguarding means, the security of these safeguarding drones cannot be

understated. Using a simulated environment, evaluating the security will be easier and

cheaper compared to a real-life application of this scenario.

In this thesis, we aim to answer the question of “How to implement a secure way for

drones to communicate in a simulated environment.”

1.3 Thesis objective

The objective of this thesis is to document and evaluate the implementation of a secure

solution for drone communication, while also discussing whether it is possible to

provide security against malicious drones in real life. The performance of the security

implementation compared to non-configured security will also be evaluated.

1.4 Thesis goals

The goal of this thesis is to deliver a simulated environment inUnreal Enginewith three

drones configured using SROS2. Two of the drones will be labelled as “ally” and will

be able to securely communicate with the operator. The third drone will be labelled as

2



CHAPTER 1. INTRODUCTION

“enemy” and is there to act an an opposing force to the “ally” drones and operator i.e.

attempt to gather unauthorized information.

1.5 Ethics and sustainability

While difficult to pinpoint when drones began to be used for gathering data through

espionage or surveillance, its presence in contemporary society is undeniable. This

has forced affected parties to respond by investing in defense systems that are capable

of incapacitating said malicious drones. One possible countermeasure against the

malicious drones would be an opposing group of drones, as in the setting of this

thesis.

An important thing to note is that drones themselves are not inherently good or evil

but are an extension of the society, operator, and the designer. An example of this can

be seen when comparing a Swedish and a Russian drone. While both of the countries

have their own drones, their purposes are fundamentally different. Sweden andRussia

do not operate similarly and do not share the same views and principles, and thus their

drones may serve different purposes. This is also important to take into consideration

as strengthening a drone’s securitymeans aligningwith the views and principles of said

drone’s operator, designer, and society.

In regards of sustainability, drones has proved to be an excellent alternative for delivery

as their emission and energy consumption is about five times more efficient compared

to trucks [11]. While the transporting aspect of drones certainly may decrease the

contribution to global warming, there is the malicious potential of drones. Because of

how prominent drones are becoming, companies have had to invest in strengthening

their security in order to remain sustainable as a company [12].

1.6 Methodology

The project work will consist of an environment, controller, ally drones, enemy

drone, and evaluation methods. The evaluation methods will be done in a form of a

simulation and a redesign of the simulation and evaluation methods will be based on

3



CHAPTER 1. INTRODUCTION

observations.

1.7 Stakeholders

This thesis work is done for Saab Dynamics. The company manufactures a multitude

of weapons, vehicles, and other defense systems, systems that have been met with

attempts of espionage and information theft from competitive actors. Thus, secure

communication is vital for present products, but more so future products. This, along

with the prevalence and on-going development of commercialized drones, we believe

that the project and thesis would be of benefit to the company. With the severity of

malicious drones we believe that this would be of benefit to many companies that

already use drones.

1.8 Delimitations

The project is about drone communication, so factors like weather condition or

obstacles are not taken into account and are not implemented. The “enemy” drone

is also assumed to not serve any purpose other than to listen for unauthorized

information for the sake of lowering the work’s complexity. SROS2 uses SSL and TLS

to ensure encryption butwe decide to not evaluate SSL andTLS aswe are not interested

in how they work, but rather if it is possible to create a secure communication solution

for drones.

1.9 Outline

This thesis is structured as follows. In Chapter 2, we go through the background for

the project in more detail as well as cover related work and how usable it is; In Chapter

3 we follow the theoretical description of all methodologies and methods used when

working on the thesis; In Chapter 4, we describe the entire practical process of creating

our work; In Chapter 5, we evaluate and discuss the results we got; In Chapter 6, we

conclude our work.

4





Chapter 2

Background and related work

2.1 Background

This chapter briefly examines the evolution from ROS1 to ROS2, emphasizing the

latter’s improvements in stability, security, and cross-environment compatibility.

Additionally, it introduces SROS2, a pivotal component for enhancing security in

robot applications through the use of DDS. The chapter underscores the importance

of AirSim, a Microsoft-developed plugin for Unreal Engine 4, showcasing its versatile

capabilities for testing AI and autonomous systems, including its cross-platform

compatibility and seamless integration with ROS2 and SROS2. Furthermore, it

acknowledges Unreal Engine 4.27’s role as a powerful platform for vehicle simulations.

The chapter references two significant related works: ”Fast, Reliable, and Secure

Drone Communication: A Comprehensive Survey,” by Hassija et al. [13] which

explores security challenges in drone communication and presents solutions and

limitations, and ”Internet of Drones Security: Taxonomies, Open Issues, and Future

Directions,” by Derhab et al. [14] which delves into cybersecurity and physical security

aspects of the Internet of Drones (IoD), providing insights through taxonomies and

countermeasures.

6



CHAPTER 2. BACKGROUND AND RELATEDWORK

2.1.1 ROS2 and SROS2

ROS2 is a revamp of its predecessor Robot Operating Systems (ROS1), a software

framework1 that is tailored for robot applications. It is built upon the subscriber-

publishermodel, which uses executables called nodes that can communicatewith other

nodes using a master node called topic [15, 16]. A topic works as a device that

forwards messages received from other nodes.

The transition from ROS1 to ROS2 happened because ROS1, although proving to be

very promising for future robotics, was unstable and did not offer security or any choice

of environment outside of Linux [9]. With the release of ROS2 came also the release

of SROS2 which would allow security on top of your robot applications [6].

In terms of ROS2, security is provided by the use of Data Distribution Service (DDS),

a network middleware that serves to simplify complex network programming. ROS2

Foxy uses the open-source eProsima for its DDS implementation. This, together with

openssl, open-source implementation of SSL and TLS, are all the tools you need to

set up security in ROS2. ROS2 uses something called keystore to ensure security

of nodes. A keystore is a directory at which all your security files will be contained,

such as keys, enclaves, certificates, permissions, and governance [17]. Keys

are used to encrypt and decrypt data between two actors, one public key that is per its

namesake public and should be distributed to all if one wants to communicate, and the

private key is a key that should be kept away and should never be distributed to other

actors. Like a lock, the public key can “lock” data and only the corresponding private

key can “unlock” the data. Enclaves are directories where security files associated with

a specific node are located. Certificates are “anchors of trust”, an entity that validates

identities and permissions of all nodes in a network. It links nodes with cryptographic

key pairs and digital certificates as proof of ownership, including permissions and

identity. Governance serves to configure network-wide settings, such as handling of

unauthenticated nodes, and default rules.

1An abstraction in programming that provides general functionality that can be modified with
additional user-written code, providing application-specific software.
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2.1.2 AirSim

AirSim is a plugin made for Epic Games’ 3D computer graphics game engine Unreal

Engine 4 developed by Microsoft [18]. This open-source2 plugin is used to support

testing of Deep Learning, AI, and autonomy of vehicles through simulation. It also

supports cross-platformingwithWindows andLinux and can communicatewithROS2,

and SROS2 by default [19]. This project was led by Microsoft Research since 2017 that

has served as a platform for researching AI but has since 2022 ceased development

to instead be developed into an end-to-end platform3 in response to the need of the

aerospace industry [20]. See Figure 2.1.1.

Figure 2.1.1: Visualization of how AirSim works with ROS2 and Unreal Engine 4.27.

2.1.3 Unreal Engine 4.27

Unreal Engine 4.27 is a 3D computer graphics game engine developed by Epic Games.

While Unreal Engine is more known for game creation, it has seen significant use for

vehicle simulations over the years using the AirSim plugin previously mentioned.

2.2 Related work

2.2.1 Fast, Reliable, and Secure Drone Communication: A

Comprehensive Survey

Hassija et al. [13] surveys a significant number of works related to drones. The work

cover common critical security challenges, challenges like Denial of Service (DoS)

attacks, Man-in-the-middle (MiTM) attacks, De-Authentication attacks, Jamming,

2Code that can be modified and distributed as one’s own by anyone.
3A system or service that is carried out from beginning to end without assistance from a third-party.
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CHAPTER 2. BACKGROUND AND RELATEDWORK

GPS Spoofing, and Radar. Solutions to these security challenges are covered in depth

along with their advantages and disadvantages.

The goal of [13]work is to informpeople of these security challenges as there are drones

that, if hacked or intercepted, could lead to significant damage or even casualties, e.g.,

Disaster Management Drones, Agriculture Drones, andMilitary Drones. It also serves

as a resource of significant value for already-existing drone applications, but also for

future drone applicationswhen it comes to bettering their security and in turn ensuring

high-quality robotics.

The main limitations of [13] work is that while it cover solutions to the numerous

challenges, it does not cover how to implement said solutions to these challenges.

Another thing to note is that, while solutions do exist for these challenges, many of

them cannot be realistically implemented because of the limitation on resources that

drones can handle or more research/analysis has to be conducted to fully explore the

solutions.

While no implementation of the solutions are present in [13], the main benefit

of this work is that the challenges and their solutions can be taken into account

when implementing communication between drones. This survey’s content will

serve as a significant piece of reference, much like a cheat sheet, to use when

implementing and troubleshooting a secure solution for communication between

drones. A comprehensive list of challenges drones are faced with in contemporary

society will surely help to strengthen the security of our work while also reminding

us of other challenges to work on in future work. This could be of further use in future

work as the natural progression of our work would be to migrate it from simulation to

reality.

2.2.2 Internet of drones security: Taxonomies, open issues, and

future directions

Derhab et al. [14] surveys works related to the cyber and physical security of Internet

of Drones (IoD). It covers novel Taxonomies4, risk assessment, extensive coverage

4Categorization of attacks/threats: components of drones (i.e., assets), attacks, and
countermeasures.
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of countermeasures, operation system security, and ranking of open issues. This,

along with a multitude of tables, images, and extensive coverage over previous works

provides a comprehensive survey that take more aspects of IoD into account and

summarizes it all into one place.

The goal of [14] is to complement related works to IoD as Derhab et al. believes

that existing surveys have limited scope or offer only covers partial countermeasures

for cyber-security. They further complement this by contributing with their own

taxonomies, ranking the importance and severity of open issues and future work

needed for IoD to make a more complete survey.

Similar to the previouswork byHassija et al. [13], [14] does not cover how to implement

their countermeasures. This leaves more to be wanted from a survey whose goal is to

complement other related surveys.

Even without the knowledge needed to implement their countermeasures, it’s benefit

to our work is undeniable. Much like Hassija et al. [13], [14]’s survey will serve

significant value in a form of a reference sheet and a data necessary to weigh

countermeasures against each other. The survey done would be of great value to any

work that relates to IoD as it complements previous works in the field and further

contributes with [14] own taxonomy of risks and challenges for future work and

research.

10





Chapter 3

Design

The design will consist of environment, controller, ally drones, enemy drone, and

evaluation methods, see Figure 3.0.1. These parts are essential and necessary to

complete the thesis goals (Section 1.4) while also creating the tools necessary to make

a discussion on the thesis objective (Section 1.3).

3.1 Simulated environment

In accordance with the delimitations (Section 1.8), the simulated environment is not

prioritized in this thesis. Therefore, the default environment generated by Unreal

Engine will be used and no further features excluding the drones will be implemented

to said environment.

3.2 Controller

The controller will be a node that communicates with AirSim and allows for

maneuvering the “ally” drones by sending user-defined coordinates in space, coupled

with a drone name. See Figure 3.4.1.

12



CHAPTER 3. DESIGN

Figure 3.0.1: Visualization of the general design of the SROS2 network consisting of
drones, operator, and keys.

3.3 Ally drones

The “ally” drones will be configured inside AirSim and exist inside the generated

environment. It will be a node that logs and receives data of the drones’ location

through a secure topic during simulation, namely talker and listener. The talker

executable will log the “ally” drones’ location in space and publish it to the secure topic.

The listener executable will print the data it fetches as it subscribes to the secure

topic. The movement of the ally drones will be dictated by the use of the controller

node. See Figure 3.4.1.

3.4 Enemy drone

The “enemy” drone will also be configured inside AirSim and exist inside the generated

environment. The “enemy” dronewill behave as a listener node and attempt to listen

13
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to the “ally” drones’ position in space. The “enemy” drone does not need the capability

to maneuver as distance between nodes and topics does not exist in ROS2 networks.

See Figure 3.4.1.

Figure 3.4.1: Visualization of the actual design of the SROS2 network consisting of
ROS2-scripts such as controller, ally drones, and enemy drone, as well as talkers,
listeners, and topic.

3.5 Evaluation methods

3.5.1 WireShark & tcpdump

WireShark is an application that logs packages that traverses in a network. It provides

the ability to showcase a significant amount of information about the package it logs

such as the protocol it uses and the data it carries. tcpdump is a similar tool used in

Linux to display traffic.

3.5.2 Rqt_graph

rqt_graph is a GUI plugin for ROS2 that allows the user to debug and visualize a

graph that maps the connections established between nodes and topics in a ROS2

application.
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3.5.3 Enemy drone

The enemy drone will be a drone that exists inside the simulation, alongside with the

other “ally” drones. The purpose of this enemy drone is to subscribe, i.e. listen to

the same topic that the other drones are subscribed to, and effectively eavesdrop on

sensitive information exchanged between the “ally” drones. The enemy drone will also

be given a separate key store along with it’s own pair of keys to indicate that the enemy

drone is an external system introduced to the ROS2 network application.

3.5.4 Latency performance

Latency performance will be done by using two scripts, each with its own publishers

and subscribers, as well as two topics. These scripts interact with each other to

measure latency. One script creates a message of a specific size and publishes it to

send_to_topic. This message is sent to the other script via the topic. The other script

subscribes to themessage and thenpublishes it to the other topic, receive_from_topic.

The script that receives the message at the end, after it has passed through two topics,

measures the total travel time of the message. To calculate the average latency, the

total travel time of the message is divided by two. This is because the message has

traveled from one script to the other through two topics, so dividing it by two gives you

the average time it took for the message to traverse each topic. To get a more accurate

measurement of latency, this test is conducted a hundred times for each packet size

(1KB, 2KB, 4KB, 8KB, and 16KB). This is done to account for any variability in the

network or system performance. See Figure 3.5.1 for an overview.

3.5.5 Throughput performance

Throughput performance will be done by using two scripts that include their own

publishers and subscribers, as well as two topics. One script will create a message of

specific size and publish it as many times as it can under a second to one of the topics

and subscribe to the other, while the other script will subscribe to the messages sent

to one of the topics and count the total amount of packets coming in before publishing

the total count to the other topic. The second script will know when to start and stop

counting the packet count when the other script sends messages “start” and “stop”
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to start and stop the packet counting, respectively. The throughput will equal to the

total packet count as this will be done in a second to simplify the calculation of said

throughput. This throughput test will be conducted a hundred times with each packet

size and an average of each packet size will be used for better approximation. The sizes

of the messages will be 1KB, 2KB, 4KB, 8KB, 16KB. More packet sizes could be used,

but were not deemed necessary as this throughput test only serves to have an idea of

the performance difference between configured and non-configured SROS2.

Figure 3.5.1: Visualization of the design structure used for the latency and throughput
test.
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Chapter 4

Implementation

This implementation chapter focuses on setting up the environment for the project. It

includes the installation of various tools and software components such as WSL with

Ubuntu 20.04, ROS2,Microsoft Visual Studio 2022, AirSim, andUnreal Engine 4.27.2.

The installation process involves using PowerShell with administrative rights to set

up WSL, installing ROS2 on both Ubuntu and Windows, configuring Visual Studio

2022, building AirSim, and configuring an environment for simulations in Unreal

Engine.

Additionally, the chapter covers security aspects, including the creation of key stores

for running nodes securely and automating the process of running nodes within the

simulation environment. The chapter also discusses the configuration of ROS2 nodes,

including the creation of containers, setting up controllers, and configuring ”ally” and

”enemy” drone nodes. It provides code snippets and explanations for each of these

components.

Finally, the chapter introduces latency and throughput evaluation methods using

tools like WireShark, tcpdump, rqt_graph, and custom ROS2 nodes for latency and

throughput measurement.
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4.1 Environment

Firstly, the environment is set up. This includes WSL with Ubuntu 20.04, ROS2,

Microsoft Visual Studio 2022, AirSim, and Unreal Engine 4.27.2. Installing WSL is

done through Powershell with administrative rights and running wsl --install -d

Ubuntu-20.04. Once installed, the prompts are followed and a Linux user for WSL is

set up. With that set up, ROS2 is installed using the instructions found in Appendix A.

The installation of ROS2 on Windows is done similarly through Powershell with

instructions found in Appendix B. With ROS2 configured and ready to use, Visual

Studio 2022 Community Edition is installed. Visual Studio also needs additional

components to be installed in order to successfully build AirSim, see Figure 4.1.1.

Figure 4.1.1: Necessary components in Visual Studio 2022 installer.

The latest AirSim version can be found in Microsoft’s GitHub repository. Building

AirSim so that the environment in Unreal Engine supports it was done by running

setup.sh and build.sh inside WSL from the AirSim directory and then running

build.cmd insideDeveloper Command Prompt for VS 2022 as an Administrator.
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Once the builds were complete, the last step to configure an environment that

supported AirSim and allows for simulations in Unreal Engine is to run the newly

generated project file inside <AirSim directory>/Unreal/Environments/Blocks and

agree to the appearing prompt, see Figure 4.1.2.

Figure 4.1.2: Rebuilding project to appropriate Unreal Engine version.

Rebuilding the project will automatically open it up in Unreal Engine. To simplify

the initialization before running the simulation a specific settings.json file was used,

see Appendix C. This file also includes the initialization of two “ally” drones and one

“enemy” drone with their own unique names and positions in space.

In regards of the security for when running the nodes, key stores has to be created to

enable it. This can be done by first installing openssl by typing sudo apt update &&

sudo apt install libssl-dev for WSL while for CMD the isntructions are found in

Appendix B. Creating a key store is done by typing ros2 security create_keystore

<key_store_name>. Generating the keys for all the nodes is done with ros2 security

create_enclave <key_store_name> <key_directory>. See Appendix D to see the

environment that will be used in this work. Lastly, to automate the process of running

the nodes inside the simulation, settings inside ̃/.bashrc withinWSL can be changed

to accommodate that. See Appendix E. The environment variables for Windows were

manually put in upon start of session.

4.2 Configuration of ROS2 nodes

Before configuring ROS2 nodes, a container needs to be configured first. Creating a

container, or ROS2 package, can be done by running ros2 pkg create --build-type

ament_python
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drone_communication. This package is then used to automate the building process of

the nodes and building it can be done by running colcon1 build --symlink-install

--cmake-args -DSECURITY=ON and source install/setup.bash.

Both the “ally” and “enemy” drone node uses variables from a Python file called

constants.py. This is to remove redundancy and allow for change of values in both

drone nodes from the same file, see Listing 4.1.

1 from os import environ

2

3 IP_ADR = environ['WSL_HOST_IP']

4 PORT = 41451

5 ALLY_DRONE_LIST = ["AllyDrone1", "AllyDrone2"]

6 TALKER_NAME = 'ally_talker'

7 ENEMY_LISTENER_NAME = 'enemy_listener'

8 LISTENER_NAME = 'ally_listener'

9 TOPIC_NAME = 'ally_topic'

10 TIMER_PERIOD = 5.0

Listing 4.1: Python file containing constants for other nodes to use.

4.2.1 Controller

The first step of implementing a controller node is to establish a connection

with AirSim. This is done by connecting to the airsim module with the

MultirotorClient class and sending an ip and port value as parameters. This

is then verified by using the confirmConnection method. Once the connection

was established and verified, implementing user-defined coordinates in space and

drone name was left. This is done by making use of the sys module to fetch

arguments from the command line when running the node. The controller

node is run like ros2 run drone_communication controller --ros-args --enclave

/tool/controller AllyDrone1 -5.0 -5.0 -5.0. Hence, argv[4] correlates to the

name of the drone and argv[5], argv[6], and argv[7] correlates to the x, y, and z

coordinates in space, respectively.

Finally, this is sent to the moveToPositionAsync method with the arguments

1Also called collective construction and is a command line tool that automates the building and
testing process of packages.
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we fetch from the command line (as well an arbitrary velocity value, hence

the 2) and move the vehicle correlating to the given vehicle_name to the x,

y, and z positions given with a velocity of 2 m/s. Running the executable

is done with ros2 run drone_communication controller --ros-args --enclave

/tool/controller <drone_name> <x> <y> <z>. See Listing 4.2

1 import airsim

2 import sys

3 import os

4

5 ip_adr = os.environ['WSL_HOST_IP']

6 port = 41451

7 def main(args=None):

8 client = airsim.MultirotorClient(ip=ip_adr, port=port)

9 client.confirmConnection()

10 drone_name = str(sys.argv[4])

11 x = float(sys.argv[5])

12 y = float(sys.argv[6])

13 z = float(sys.argv[7])

14 client.moveToPositionAsync(x, y, z, 2, vehicle_name=drone_name)

15 if __name__ == '__main__':

16 main()

Listing 4.2: Python file for sending new coordinates to drones in simulation.

4.2.2 Ally drone

Configuring the “Ally” drone includes configuring a talker node and a listener

node.

In regards of the talker node, after establishing and verifying the connection to

AirSim, a publisher is created. The publisher is of String message type, publishing

to TOPIC_NAME, and has an output buffer size of ALLY_DRONE_LIST. Along with

this, a timer_callback is defined that forces the publisher to do something every

TIMER_PERIOD seconds.

In timer_callback a message output is configured. Every TIMER_PERIOD seconds a

message containing a drone’s x, y, and z values are published to TOPIC_NAME. This is
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wrapped in a for-loop that iterates through all “ally” drones, effectively publishing all

of the “ally” drones’ coordinates. This is sent to TOPIC_NAME, as well as logged in the

terminal.

Lastly, the node is created in main, along with a try-except block that will run

the node until the user destroys it and sequentially stops the executable. Running

the executable is done with ros2 run drone_communication talker --ros-args

--enclave /drone/talker. See Listing 4.3.

1 import rclpy

2 import airsim

3 from rclpy.node import Node

4 from std_msgs.msg import String

5

6 from .constants import IP_ADR

7 from .constants import PORT

8 from .constants import ALLY_DRONE_LIST

9 from .constants import TALKER_NAME

10 from .constants import TOPIC_NAME

11 from .constants import TIMER_PERIOD

12

13 class Talker(Node):

14 def __init__(self):

15 client = airsim.MultirotorClient(ip=IP_ADR, port=PORT)

16 client.confirmConnection()

17 super().__init__(TALKER_NAME)

18 self.pub = self.create_publisher(String,

19 TOPIC_NAME ,

20 len(ALLY_DRONE_LIST))

21

22 self.tmr = self.create_timer(TIMER_PERIOD , self.timer_callback)

23

24 def timer_callback(self):

25 client = airsim.MultirotorClient(ip=IP_ADR, port=PORT)

26

27 msg = String()

28 for drone in ALLY_DRONE_LIST:

29 current_pos = client.simGetObjectPose(drone).position

30 msg.data = "{}'s pos: x: {}, y: {}, z: {}".format(drone,
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31 current_pos.x_val,

32 current_pos.y_val,

33 current_pos.z_val)

34 self.get_logger().info('Saying {}'.format(msg.data))

35 self.pub.publish(msg)

36 print('\n\n')

37

38 def main(args=None):

39 rclpy.init(args=args)

40 node = Talker()

41

42 try:

43 rclpy.spin(node)

44 except(KeyboardInterrupt):

45 node.destroy_node()

46 rclpy.try_shutdown()

47

48 if __name__ == '__main__':

49 main()

Listing 4.3: ROS2 node that publishes drone coordinates to TOPIC_NAME.

In regards of the listener node, after establishing and verifying the connection to

AirSim, a subscriber is created. The subscriber is of String message type, subscribing

to TOPIC_NAME, and has an output buffer size of ALLY_DRONE_LIST. Along with this, a

chatter_callback is defined that relays messages from TOPIC_NAME.

In chatter_callback a message output is configured. The message received from the

subscription is logged in the user terminal. The logging output is also formatted with

blank spaces in between received messages to increase legibility.

Lastly, the node is created in main, along with a try-except block that will run

the node until the user destroys it and sequentially stops the executable. Running

the executable is done with ros2 run drone_communication listener --ros-args

--enclave /drone/listener. See Listing 4.4.

1 import rclpy

2 import airsim

3 from rclpy.node import Node
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4 from std_msgs.msg import String

5

6 from .constants import IP_ADR

7 from .constants import PORT

8 from .constants import ALLY_DRONE_LIST

9 from .constants import LISTENER_NAME

10 from .constants import TOPIC_NAME

11

12 class Listener(Node):

13 def __init__(self):

14 client = airsim.MultirotorClient(ip=IP_ADR, port=PORT)

15 client.confirmConnection()

16 super().__init__(LISTENER_NAME)

17

18 self.drones = len(ALLY_DRONE_LIST)

19 self.spacing = 0

20 self.sub = self.create_subscription(String,

21 TOPIC_NAME ,

22 self.chatter_callback ,

23 self.drones)

24 def chatter_callback(self, msg):

25 self.get_logger().info('Recieved {}'.format(msg.data))

26 self.spacing += 1

27 if self.spacing % self.drones == 0:

28 print('\n\n')

29

30 def main(args=None):

31 rclpy.init(args=args)

32 node = Listener()

33

34 try:

35 rclpy.spin(node)

36 except(KeyboardInterrupt):

37 node.destroy_node()

38 rclpy.try_shutdown()

39

40 if __name__ == '__main__':
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41 main()

Listing 4.4: ROS2 node that subscribes to TOPIC_NAME.

4.2.3 Enemy drone

Configuring the “enemy” drone only includes a listener node as the “enemy” drone

will only serve as an executable that eave-drops on traffic going through the topic

used by the “ally” drones. After establishing and verifying the connection to AirSim,

a subscriber is created. The subscriber is of String message type, listening to

TOPIC_NAME, and has an output buffer size of one as there will only be one “enemy”

drone. Along with this, a chatter_callback is defined that will relay everything it

successfully picks up from TOPIC_NAME.

Lastly, the node is created in main, alongwith a try-except block thatwill run the node

until the user destroys it and sequentially stops the executable. Running the executable

is done with ros2 run drone_communication enemy_drone --ros-args --enclave

/enemy_drone/drone. See Listing 4.5.

1 import rclpy

2 import airsim

3 from rclpy.node import Node

4 from std_msgs.msg import String

5 from .constants import IP_ADR

6 from .constants import PORT

7 from .constants import ENEMY_LISTENER_NAME

8 from .constants import TOPIC_NAME

9

10 class Enemy_Drone(Node):

11 def __init__(self):

12 client = airsim.MultirotorClient(ip=IP_ADR, port=PORT)

13 client.confirmConnection()

14 super().__init__(ENEMY_LISTENER_NAME)

15

16 self.sub = self.create_subscription(String,

17 TOPIC_NAME ,

18 self.chatter_callback ,

19 1)
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20

21 def chatter_callback(self, msg):

22 self.get_logger().info('Just stole {}'.format(msg.data))

23 print('\n\n')

24

25 def main(args=None):

26 rclpy.init(args=args)

27 node = Enemy_Drone()

28

29 try:

30 rclpy.spin(node)

31 except(KeyboardInterrupt):

32 node.destroy_node()

33 rclpy.try_shutdown()

34

35 if __name__ == '__main__':

36 main()

Listing 4.5: ROS2 node that will attempt to subscribe to TOPIC_NAME.

4.2.4 Latency

Latency performance will be measured by using two scripts; pre_latency is

responsible for publishing messages with specific packet sizes to the send_to_topic

topic and subscribing to the receive_from_topic topic; post_latency is responsible

for subscribing to the send_to_topic topic and relaying, i.e. publishing the subscribed

message to the other receive_from_topic topic. Using the datetime.datetime.now()

method from said module that allows to return real-time, pre_latency can measure

the time taken the message takes to travel to the send_to_topic and then to the

receive_from_topic topic by subtracting the time difference between the two topics.

The latency was calculated by taking the travel-time for the message between the two

topics and then dividing it by two. datetime.datetime.now().microsecond was used

in the calculation for increased precision. The contents of the message was generated

using Python’s random library, namely getrandbits. See Listing 4.6 and 4.7.

1 import rclpy

2 import airsim
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3 import random

4 import datetime

5 import sys

6 from rclpy.node import Node

7 from std_msgs.msg import String

8

9 from .constants import IP_ADR

10 from .constants import PORT

11 from .constants import TALKER_NAME

12

13 counter = 0

14 totLatency = 0

15 msg_size = 32000*8

16

17 class PreLatency(Node):

18

19 def __init__(self):

20 client = airsim.MultirotorClient(ip=IP_ADR, port=PORT)

21 client.confirmConnection()

22 super().__init__(TALKER_NAME)

23 self.pub = self.create_publisher(String,

24 "send_to_topic",

25 1)

26 self.tmr = self.create_timer(1, self.timer_callback)

27

28 self.sub = self.create_subscription(String,

29 "receive_from_topic",

30 self.chatter_callback ,

31 1)

32

33 def timer_callback(self):

34 global send_msg

35 send_msg = String()

36 send_msg.data = ''.join(hex(random.getrandbits(msg_size)))

37 global time1

38 time1 = datetime.datetime.now()

39 self.pub.publish(send_msg)

40

41 def chatter_callback(self, msg):
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42 global counter

43 global totLatency

44 counter = counter + 1

45 received_msg = msg

46

47 if send_msg == received_msg:

48 time2 = datetime.datetime.now()

49 totLatency = totLatency + ((time2.microsecond - time1.

microsecond)/2)

50

51 def main(args=None):

52 rclpy.init(args=args)

53 node = PreLatency()

54

55 try:

56 rclpy.spin(node)

57 except(KeyboardInterrupt):

58 node.destroy_node()

59 rclpy.try_shutdown()

60

61 if __name__ == '__main__':

62 main()

Listing 4.6: ROS2 node that will send a random-sized message to a topic whilst also

measuring the time it takes for the same message to be relayed back.

1 import rclpy

2 import airsim

3 from rclpy.node import Node

4 from std_msgs.msg import String

5

6 from .constants import IP_ADR

7 from .constants import PORT

8 from .constants import ALLY_DRONE_LIST

9 from .constants import LISTENER_NAME

10 from .constants import TOPIC_NAME

11

12 class PostLatency(Node):

13 def __init__(self):
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14 client = airsim.MultirotorClient(ip=IP_ADR, port=PORT)

15 client.confirmConnection()

16 super().__init__(LISTENER_NAME)

17

18 self.sub = self.create_subscription(String,

19 "send_to_topic",

20 self.chatter_callback ,

21 1)

22

23 self.pub = self.create_publisher(String,

24 "receive_from_topic",

25 1)

26

27 def chatter_callback(self, msg):

28 received_msg = msg

29 self.pub.publish(received_msg)

30

31 def main(args=None):

32 rclpy.init(args=args)

33 node = PostLatency()

34

35 try:

36 rclpy.spin(node)

37 except(KeyboardInterrupt):

38 node.destroy_node()

39 rclpy.try_shutdown()

40

41 if __name__ == '__main__':

42 main()

Listing 4.7: ROS2 node that relays the message sent from the other Latency nodefor

the latency test.

4.2.5 Throughput

Throughput performance will be measured using two scripts; pre_throughput is

responsible for publishing as many messages with specific packet sizes to the

send_to_topic topic as possible and subscribing to the receive_from_topic topic;
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post_throughput is responsible to count the messages it gets by subscribing to the

send_to_topic topic and then publish the message count to the receive_from_topic

topic. Using the datetime.datetime.now() method from said module that allows to

return real-time, pre_throughput can measure, for example when a second in the

script has passed by saving the value of datetime.datetime.now().second and then

constantly comparing it with another instance of datetime.datetime.now().second

until the difference between the two instances are one. This was used in tandem

with a while-loop to replicate the constant publishing of messages during a second.

post_throughput knew when to start and stop the packet counting indicated by

pre_throughput’s appropriate publishing of a “start” and “stop” message before and

after the desired time interval, respectively. Once the “stop” message was subscribed

to, the packet count was published as a message to the send_to_topic topic. The

calculation of the throughput was simply the packet count as this was done under a

second to simplify said calculation. See Listing 4.8 and 4.9.

1 import rclpy

2 import airsim

3 import random

4 import datetime

5 from rclpy.node import Node

6 from std_msgs.msg import String

7

8 from .constants import IP_ADR

9 from .constants import PORT

10 from .constants import TALKER_NAME

11

12 counter = 0

13 totThroughput = 0

14 packet_size = 32000*8

15

16 class PreThroughput(Node):

17

18 def __init__(self):

19 client = airsim.MultirotorClient(ip=IP_ADR, port=PORT)

20 client.confirmConnection()

21 super().__init__(TALKER_NAME)

22 self.pub = self.create_publisher(String,
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23 "send_to_topic",

24 1)

25 self.tmr = self.create_timer(2, self.timer_callback)

26

27 self.sub = self.create_subscription(String,

28 "receive_from_topic",

29 self.chatter_callback ,

30 1)

31

32 def timer_callback(self):

33 global send_msg

34 send_msg = String()

35 send_msg.data = "start"

36 self.pub.publish(send_msg)

37 i = datetime.datetime.now().second + 1

38

39 while datetime.datetime.now().second < i:

40 send_msg.data = ''.join(hex(random.getrandbits(packet_size)))

41 self.pub.publish(send_msg)

42

43 send_msg.data = "stop"

44 self.pub.publish(send_msg)

45

46 def chatter_callback(self, msg):

47 global counter

48 global totThroughput

49 counter = counter + 1

50 nr_of_packets = int(msg.data)

51 totThroughput = totThroughput + (nr_of_packets*packet_size)

52

53 def main(args=None):

54 rclpy.init(args=args)

55 node = PreThroughput()

56

57 try:

58 rclpy.spin(node)

59 except(KeyboardInterrupt):

60 print("Average throughput is:", ((totThroughput/counter)/8000000),

"Mbps!")
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61 node.destroy_node()

62 rclpy.try_shutdown()

63

64 if __name__ == '__main__':

65 main()

Listing 4.8: ROS2 node that will send a random-sized packets to “send_to_topic” topic

during one second and calculate the throughput with the help of the message gotten by

subscribing to “receive_from_topic”.

1 import rclpy

2 import airsim

3 from rclpy.node import Node

4 from std_msgs.msg import String

5

6 from .constants import IP_ADR

7 from .constants import PORT

8 from .constants import ALLY_DRONE_LIST

9 from .constants import LISTENER_NAME

10 from .constants import TOPIC_NAME

11

12 nr_of_packets = 0

13

14 class PostThroughput(Node):

15 def __init__(self):

16 client = airsim.MultirotorClient(ip=IP_ADR, port=PORT)

17 client.confirmConnection()

18 super().__init__(LISTENER_NAME)

19

20 self.sub = self.create_subscription(String,

21 "send_to_topic",

22 self.chatter_callback ,

23 1)

24

25 self.pub = self.create_publisher(String,

26 "receive_from_topic",

27 1)

28

29 def chatter_callback(self, msg):
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30 global nr_of_packets

31 if msg.data == "start":

32 nr_of_packets = 0

33 elif msg.data == "stop":

34 send_msg = String()

35 send_msg.data = ''.join(str(nr_of_packets))

36 self.pub.publish(send_msg)

37 nr_of_packets = 0

38 else:

39 nr_of_packets = nr_of_packets + 1

40

41 def main(args=None):

42 rclpy.init(args=args)

43 node = PostThroughput()

44

45 try:

46 rclpy.spin(node)

47 except(KeyboardInterrupt):

48 node.destroy_node()

49 rclpy.try_shutdown()

50

51 if __name__ == '__main__':

52 main()

Listing 4.9: ROS2 node that relays the amount of packets sent from the other

Throughput node for the throughput test.

4.3 Running the simulation & evaluation methods

Running the simulation is done by running Unreal Engine and pressing the Start

button in the upper right quadrant of the application. Once it is running, talker,

listener, enemy_drone and controller node are ready to run using the command

that can be found at the end of their respective section. Each node will be running in

their respective terminal. When running the enemy_drone node, source the enemy key

store, otherwise source the ally key store when running the other nodes. Destroying

the nodes are done by pressing short-command CTRL and C.
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4.3.1 WireShark & tcpdump

Using WireShark and tcpdump for Windows and Linux respectively to evaluate

the ROS2 network is done by running them while a simulation is on-going in the

background. InsideWireShark pick the vEthernet (WSL) option and inspect the traffic

and data inside the packets, and tcpdump used the “-x” and “-i eth0” flag to show data

packets in hex bytes and ASCII from eth0 interface.

4.3.2 Rqt_graph & enemy_drone

rqt_graph and enemy_drone are part of ROS2 so running these evaluation methods is

done by running their respective commands in the terminal, those being rqt_graph

and ros2 run drone_communication enemy_drone --ros-args --enclave

/enemy_drone/drone.

4.3.3 Latency and throughput

Running the executable is done with their respective commands in the terminal. For

Latency,

ros2 run drone_communication pre_latency --ros-args -e /drone/talker, ros2

run drone_communication post_latency --ros-args -e /drone/listener,

and ros2 run drone_communication pre_latency, ros2 run drone_communication

post_latency respectively for configured and non-configured SROS2.

For Throughput, ros2 run drone_communication pre_throughput --ros-args -e

/drone/talker, ros2 run drone_communication post_throughput --ros-args

-e /drone/listener, and ros2 run drone_communication pre_throughput, ros2

run drone_communication post_throughput respectively for configured and non-

configured SROS2.
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Chapter 5

Results and evaluation

This chapter covers the results of the implementation chapter and evaluation of

said results. It begins by discussing the initialization of talker and listener nodes,

emphasizing the importance of security directories and keystores in the process.

The nodes’ successful connection with the AirSim module in Unreal Engine 4.27 is

highlighted, and their communication is verified through logged drone coordinates

and traffic captured by tcpdump. The chapter distinguishes between intra-process

and inter-process communication methodologies, with the former revealing TCP

traffic generated by the AirSim module when fetching drone coordinates. However,

it clarifies that intra-process communication, while revealing coordinates in TCP

traffic, is not practical for real drone networks due to its limited scope within

host memory. The chapter proceeds to describe the successful interaction between

the controller node and the talker node, resulting in updates to drone coordinates.

It then explores the limitations of using the rqt_graph tool in a security-enabled

environment, emphasizing the importance of security files. The chapter concludes

with an evaluation of the enemy_drone node, demonstrating that SROS2 effectively

prevents unauthorized access by nodes with different keystores. The performance

evaluation section analyzes latency and throughput tests, revealing that SROS2

security configurations introduce overhead in terms of reduced throughput and

increased latency compared to non-configured SROS2, highlighting the impact of

security measures on performance.
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5.1 Talker and listener nodes

As seen in Figure 5.1.1 and 5.1.2, before the two nodes are initialized, they first find

their security directory at which their keystore is located. This is dictated by the use

of the SROS2 environment variables, see Appendix D. Once the security is established

and the keystore is found, the nodes are run. This can be seen from the “Connected!”

and “Client Ver:1 (Min Req: 1), Server Ver:1 (Min Req: 1)” log, which signify that

the nodes have connected with the airsim module and in turn the simulation running

in Unreal Engine 4.27. Then, the talker and listener node communicate as seen in

Figure 5.1.1 and 5.1.2 by the logging of each “ally” drone’s coordinates in space. Their

communication can also be verified by looking at traffic caught by tcpdump during

runtime, see Figure 5.1.3. The contents of the data seen in Figure 5.1.3 is encrypted

and not legible, but what remains “visible” in the data packet is the use of Real Time

Publish Subscribe Protocol or RTPS, a protocol for publisher and subscriber model

communicationsmuch like ROS2. This data packet would come to look like something

seen in Figure 5.1.4 if security was not enabled.

While the talker and listener node are communicating, traffic from the simulation itself

is being generated as seen in Figures 5.1.6 and 5.1.5. This traffic was captured using

Wireshark on Windows as Unreal Engine is installed on the Windows environment.

Upon closer inspection, the two snippets of traffic are not the same. This is because

Figure 5.1.6 is running the talker and listener node over LAN, i.e. one CMD session

and one WSL session, while Figure 5.1.5 is running talker and listener using shared

memory, i.e. two WSL sessions on the same machine. The different results can

be contributed to the two different approaches to communication configured by

ROS2. These two communication methodologies are named intra-process and

inter-process for shared memory and LAN communication, respectively. As per

its namesake, shared memory communication or intra-process communication moves

its traffic over the host’s memory, while inter-process communication uses the ROS2

middleware to move traffic over the LAN. This is important to remember when

comparing the two. While both of the communication methodologies sends data as

seen by the appropriately named “DATA” packets seen in both figures, intra-process

also includes TCP traffic.
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Upon further inspection, the TCP traffic seen in Figure 5.1.7 shows the traffic generated

by the airsim module when client.simGetObjectPose(drone).position is run, See

Listing 4.4. It is evident that upon fetching a drone’s coordinates using the airsim

module, the TCP packet containing the coordinates going from said module to the

talker node can be seen. While this looks like a cause of concern when it comes to

security, there is something to further evaluate. While intra-process communication

inside a ROS2 network discloses the coordinates of drones from its TCP traffic to

anyone using Wireshark, the communication methodology could never be used for

drone networks in reality. The reason is that a drone network using in-processmemory

communication in real life cannot be replicated. Shared memory communication

means that the communication can only travel in the memory of the host and not the

LAN. This would also explain why the TCP traffic is only captured when using intra-

process communication, and not when using inter-process communication.

Comparing these findings and the information gathered from it, it is safe to assume that

themessages sent between the talker and listener node are encrypted and the captured

TCP traffic generated from the airsim module is merely a consequence of using intra-

process communication.

Figure 5.1.1: A talker node running with SROS2 environment variables enabled from
CMD.

5.2 Controller

The controller node and the talker

node were run in this scenario, See Figure 5.2.1 and 5.2.2. Both were coupled with

their enclaves from the same keystore. The talker was run first to generate logs, and

thereafter the controller nodewas run. It can be seen in the talker node logging that the
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Figure 5.1.2: A listener node running with SROS2 environment variables enabled from
WSL.

Figure 5.1.3: A snippet taken from WSL when using tcpdump to capture traffic from
the talker node with security enabled.

“AllyDrone2” coordinates change as per request of the controller node’s input.

5.3 Rqt_graph

The listener node and the ROS2 plugin rqt_graph is run in two sessions of WSL. The

terminal is sourced with SROS2 environment variables before running the listener

node, and rqt_graph is run without any prior security configurations. The rqt_graph

terminal prompts an error output once the plugin runs, indicating that the executable

failed to run and no graphical tool displaying the relations between the nodes in the
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Figure 5.1.4: A snippet taken from WSL when using tcpdump to capture traffic from
the talker node with security disabled.

Figure 5.1.5: A snippet fromWireshark capturing traffic from the simulation using the
talker and listener node over shared memory.

network was shown. While an error was prompted, this is what is to be expected

because of the SROS2 implementation of the ROS2 network. If no error was given

and rqt_graph ran successfully, it would pose a security risk as rqt_graph could then

be used to bypass SROS2’s security without the need of appropriate certificate and

other security files. The error confirms that SROS2 is implemented and denies access

to unauthorized actors. While there are numerous errors in this evaluation method,

the most apparent error is the lack of security files. The rest is a consequence of the

lack of security files, as it cannot run the node without them. See Figure 5.3.1 and 5.3.2.

5.4 Enemy_drone

Much like Section 5.1, before the two are initialized, they first find their respective

security directory at which their keystores are located, ally_keystore for the talker

node and enemy_keystore for the enemy_drone node. The talker node is run and

once it successfully connects to AirSim, the enemy_drone is sequentially run, See

Figure 5.4.1 and 5.4.2. The talker node publishes to TOPIC_NAME and enemy_drone

41



CHAPTER 5. RESULTS AND EVALUATION

Figure 5.1.6: A snippet fromWireshark capturing traffic from the simulation using the
talker and listener node over LAN (inter-process).

Figure 5.1.7: Closer inspection of TCP packet sent when running talker and listener
with intra-process communication.

node attempts to subscribe to the topic. As a result of their different keystores and

different security files, the enemy_drone cannot subscribe to the topic that the talker

node is publishing to as seen by the empty logging in Figure 5.4.1. The enemy_drone’s

inability to subscribe and log what publishes to the topic shows that SROS2 does not

allow unauthorized actors, i.e. nodes with different keystores, access to the ROS2

network. Another thing to point out is that SROS2 is sophisticated enough to not

explicitly tell the enemy_drone node about the issue in their difference in keystores,

leaving as little information as possible for the operator behind the enemy_drone node

to work with.

With the combined findings of Section 5.1, 5.3, and 5.4 it is reasonable to say that the

thesis work’s implementation of ROS2 is a secure network solution for drones. It goes

without saying that SROS2 has shown significant security capabilities. The impact of

the keystore’s security files can be seen in the treatment of unauthorized nodes such

as enemy_drone, but also in Wireshark as seen in Figure 5.4.3. In the discovery packet

containing information about the security configuration, bytes forming the ascii for
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Figure 5.2.1: Controller node successfully run with SROS2 environment variables
enabled.

Figure 5.2.2: Talker node updating “AllyDrone2”’s new coordinates in the log.

“DDS:Auth:PKI-DH”, “dds.ca.algo ECDSA-SHA256”, and “DDS:Access:Permissions”

can be found. DDS:Auth:PKI-DH is an authentication plugin offered by eProsima. The

plugin uses a Certificate Authority (CA) and the ECDSA-SHA256 algorithm to ensure

authentication. Lastly, DDS:Access:Permissions indicate that permissions are active,

a part of access control.

Access control in a form of governance and permissions can be found upon inspecting

the keystore. The governance files offer configurations to a whole node network, and

permission files are used to specifically configure a node, e.g. the talker node. Upon

inspecting the numerous configurations that exists within the governance files, there

is one that ensures integrity: Message Authentication Code (MAC). eProsima offers

MAC in a form of configuration inside the governance files, spanning from NONE, to

SIGN and ENCRYPT.

5.5 Latency and throughput

Running the scripts relating to the latency test and throughput test plots out two graphs

that visualizes the performance of SROS2-configured and non-SROS2-configured

publishers and listeners. Enabling SROS2 showed on average 30.8% lower throughput

and 7.59% increased latency when compared to SROS2 disabled. See Figures 5.5.1

and 5.5.2.

With the findings of Sections 5.5.1 and 5.5.2, it is evident that there is a performance
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Figure 5.3.1: Running rqt_graph without SROS2 environment variables disabled.

difference between the two SROS2 configurations. The tests signify that the SROS2

security configuration offers a significant overhead in performance, resulting in

numbers that indicate that, while SROS2 provides security, also provides unwanted

decrease in performance compared to the non-configured SROS2. The biggest culprit

of this overhead can be seen in the throughput test with its significant 30.8% decrease

in throughput performance. It is still unclear what caused the decrease in performance

for both configurations between the 8 and 16 KB packet size. It can be speculated

that the topics become congested after a specific packet size and thus hamper the

performance of the throughput test. While it is possible that there is a packet threshold

that would explain these findings, it should be noted that this is merely speculation

and should not be taken as fact. Aside from the peculiar nature of the findings, the

throughput test itself has its flaws. For one, this simulation did not fully simulate a

throughput test per se, but rather a form of good-throughput test since the transfer

of the packets were done over one computer and did not allow for other junk or
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Figure 5.3.2: Running rqt_graph with SROS2 environment variables enabled.

Figure 5.4.1: Running the enemy_drone node along with SROS2 environment
variables set up.

loss in packets to affect the test as it would in a realistic setting. This “goodput”

yielded results that in reality does not reflect the data a throughput test would yield

if the simulation was not done over LAN. Regarding latency, while the overhead is

significantly lower compared the throughput’s, the latency result can be deceiving

because of the inclusion of TCP. Unreal Engine generates TCP traffic as the simulation

is running, something that should be taken into consideration as TCP uses handshakes

to establish communication. This is crucial to take into account when working with

something time-based like a latency test. As important as it is, it was unclear how to

calculate the time lost on handshakes in a new environment such as Unreal Engine’s.

There is a significant delay that should be taken into account and looked into when
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Figure 5.4.2: Running the talker node along with SROS2 environment variables set up.

calculating the latency. Even so, the results yielded from these tests were not meant to

precisely display the overhead performance of the SROS2 configuration, but rather to

give an idea of what the SROS2 security configuration can offer.
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Figure 5.4.3: A discovery packet showing the configuration of the keystore used
between the talker and the listener node.
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Figure 5.5.1: Comparing the latency performance between SROS2-configured and non-
SROS2-configured drones.
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Figure 5.5.2: Comparing the throughput performance between SROS2-configured and
non-SROS2-configured drones.
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Chapter 6

Conclusions and future work

The objective of this thesis was to document and evaluate the implementation of a

secure drone network using ROS2 and SROS2 in a simulated environment. Equally

as important was the thesis goal which was to deliver a simulated environment with

three drones, two “ally” drones and one “enemy” drone using ROS2.

The results that yielded was a network that allowed for “ally” drones to communicate

between each other without the hindrance of an unauthorized “enemy” drone listening

to them. The network ensured confidentiality based on the captured data that was

encrypted; Authentication because of DDS:Auth:PKI-DH and ECDSA-SHA256 found in

discovery packets; Integrity because of MAC; Authorization for SROS2’s use of CA,

governance, and permissions. While the security was successfully implemented and

proved to work, the overhead performance of SROS2 was significant.

This work contributed to the research of secure drone networks the capabilities of

simulated drone networks. With a successful SROS2 implementation and a display of

its overhead performance, it is possible to look into simulating scenarios and evaluate

the performance at a more rapid rate compared to conducting the same tests in real

life.

While this thesis displays a solution to the thesis objective, many approaches and ideas

went unexplored. Simulations has its drawbacks and can be limiting in its capabilities

to replicate a real life implementation of the thesis work. The logical development of

this thesis is to transition, implement, and evaluate SROS2 capabilities in a real life
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scenario. The choice of evaluation methods were also slim and the structure of the

simulation could have been done differently to yield more varied results to evaluate.

The next thing to dowould be to usemore evaluationmethods and structure the drones

differently so that there is more data to work with.

Another thing to look into is better security alternatives. While SROS2 showcase a

capability to provide security, the overhead performance was significant and might

serve more as a demerit than a merit in a drone network.
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Appendix A

ROS2 installation on Ubuntu

1 sudo apt update && sudo apt install locales

2 sudo locale-gen en_US en_US.UTF-8

3 sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8

4 export LANG=en_US.UTF-8

5

6 sudo apt install software-properties -common

7 sudo add-apt-repository universe

8

9 sudo apt update && sudo apt install curl

10 sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.

key -o /usr/share/keyrings/ros-archive-keyring.gpg

11

12 echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/

ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(. /etc/

os-release && echo $UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.

list.d/ros2.list > /dev/null

13

14 sudo apt install ros-foxy-desktop

15 sudo apt install ros-dev-tools

57



Appendix B

ROS2 configuration on Windows

1 Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.

ServicePointManager]::SecurityProtocol = [System.Net.

ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object

System.Net.WebClient).DownloadString('https://community.chocolatey.org/

install.ps1'))

2

3 https://slproweb.com/products/Win32OpenSSL.html

4

5 setx /m OPENSSL_CONF "C:\Program Files\OpenSSL-Win64\bin\openssl.cfg"

6

7 mkdir c:\opt\chocolatey

8

9 set ChocolateyInstall=c:\opt\chocolatey

10

11 choco source add -n=ros-win -s="https://aka.ms/ros/public" --priority=1

12 choco upgrade ros-foxy-desktop -y --execution -timeout=0 --pre
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Appendix C

AirSim settings.json

1 {

2 "SeeDocsAt": "https://github.com/Microsoft/AirSim/blob/main/docs/

settings.md",

3 "SettingsVersion": 1.2,

4 "SimMode": "Multirotor",

5 "ClockSpeed": 1,

6

7 "Vehicles": {

8 "AllyDrone1": {

9 "VehicleType": "SimpleFlight",

10 "X": 4, "Y": 0, "Z": -2

11 },

12 "AllyDrone2": {

13 "VehicleType": "SimpleFlight",

14 "X": 8, "Y": 0, "Z": -2

15 },

16 "EnemyDrone1": {

17 "VehicleType": "SimpleFlight",

18 "X": 4, "Y": 4, "Z": -2

19 }

20

21 }

22 }
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Appendix D

Keystore environment

1 ros2 security create_keystore ally_keystore

2 ros2 security create_keystore enemy_keystore

3

4 ros2 security create_key ally_keystore /drone/talker

5 ros2 security create_key ally_keystore /drone/listener

6 ros2 security create_key ally_keystore /tool/wrapper

7 ros2 security create_key ally_keystore /tool/controller

8 ros2 security create_key enemy_keystore /enemy_drone/drone
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Appendix E

BashRC settings

1 export WSL_HOST_IP=172.21.32.1

2 export ROS_SECURITY_ENABLE=true

3 export ROS_SECURITY_STRATEGY=Enforce

4

5 source /opt/ros/foxy/setup.bash

6 cd /mnt/c/Users/Ajdin/My\ Documents/thesis/ros2_ws/src

7

8 while true; do

9 read -p '"ally_keystore" (y/Y) OR "enemy_keystore" (n/N)? ' yn

10 case $yn in

11 [Yy]* ) export ROS_SECURITY_KEYSTORE=/mnt/c/Users/Ajdin/My\

Documents/thesis/ros2_ws/ally_keystore; break;;

12 [Nn]* ) export ROS_SECURITY_KEYSTORE=/mnt/c/Users/Ajdin/My\

Documents/thesis/ros2_ws/enemy_keystore; break;;

13 * ) echo -e "\nPlease answer (y/Y) or (n/N)\n";;

14 esac

15 done
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