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Abstract
A procedure for model reduction of stochastic ordinary differential equations
with additive noise was recently introduced in Colangeli et al (2022 J. Phys. A:
Math. Theor. 55 505002), based on the Invariant Manifold method and on the
Fluctuation–Dissipation relation. A general question thus arises as to whether
one can rigorously quantify the error entailed by the use of the reduced dynam-
ics in place of the original one. In this work we provide explicit formulae and
estimates of the error in terms of the Wasserstein distance, both in the pres-
ence or in the absence of a sharp time-scale separation between the variables
to be retained or eliminated from the description, as well as in the long-time
behavior.
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1. Introduction

The notion of scale separation is largely invoked in multiscale modelling and homogeneization
methods (including model reduction and operator splitting techniques) [GKS04, PS08], and
has also found far-reaching applications in different areas of science and engineering, e.g. in
climate dynamics [GL20], biochemical systems [SS17], chemical reaction networks [KK13],
smoldering combustion [IOMF14], and so on. A neat illustration of this notion can be traced in
the preface of Haken’s seminal book on Synergetics [Hak04], where the authors writes (ital-
ics added): ‘In large classes of systems that are originally described by many variables, the
behavior of a system is described and determined by only few variables, the order parameters.
They fix the behavior of the individual parts via the slaving principle’. A physical rationale
behind the slaving principle amounts to the assumption of decomposition of motions: there
exists a short time-scale during which the slow variable does not change significantly, while
the fast variable rapidly settles on a value determined by the slow one. The evolution of the
latter, in turn, takes place on a much longer scale. A specific form of such principle is realized
through the method of adiabatic elimination of fast variables, which underlies the derivation
of the Smoluchowski equation from the underdamped Langevin equation. A sharp distinction
between slow and fast variables is also a prerequisite for application of the Mori–Zwanzing
method [Zwa01] in the derivation of reduced equations from higher dimensional stochastic
dynamics, where the Markovian structure of the original process is preserved in the reduced
description by stipulating a perfect time-scale separation. The same guiding principle under-
pins, in kinetic theory, the Grad moment method [Gra49, CKK07], and has also been exploited
in the derivation of linear hydrodynamics from the Boltzmann equation using the framework
of the Invariant Manifold [GK05, CKO09]. It is worth recalling that the latter method paves
the way to an exact summation of the Chapman–Enskog expansion, which makes it possible
to circumvent the onset of short wavelength instabilities that are known to hinder the hydro-
dynamic description beyond the Navier–Stokes approximation, see e.g. [CKK07] and refer-
ences cited therein.4 The same approach has also been exploited in [CDM22] to characterize
the deterministic component of the contracted description in a system of two coupled (under-
damped) Brownian harmonic oscillators. The structure of the noise term of the Markovian
reduced dynamics, in turn, was determined via the Fluctuation–Dissipation relation. A gen-
eral question, then, concerns the derivation of a quantitative estimate of the error stemming
from the use of the reduced dynamics in place of the original one. A first attempt, in this dir-
ection, was proposed in [CM22], and it was based on the study of the equilibrium correlation
functions in the reduced and in the original processes. A uniform-in-time type of convergence
of the correlations evaluated in the two processes was proven to hold in the so-called over-
damped limit, where the friction parameter diverges.

In this work we take a step further, and compute explicitly theWasserstein distance between
the laws of the original and reduced processes. This paves the way to explicitly quantify the
error inherent to the contracted description. We focus on two classical models thoroughly
studied in statistical physics and molecular dynamics, namely the underdamped Brownian
harmonic oscillator and a system of two coupled overdamped Brownian harmonic oscillators.
In the more traditional approach based on the slow-fast decomposition of motions, a reduced
description can be achieved by passing the parameter to a certain limit, thus establishing a
perfect time-scale separation, see e.g. [Zwa01, GLCG21]. In the present work, instead, we

4 Further details (regarding e.g. the stability and the saturation of dissipation for short waves) on the contracted descrip-
tion resulting from the exact summation of the Chapman–Enskog expansion are discussed in [GK13].
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derive the reduced dynamics in a regime characterized by a finite time-scale separation, which
is controlled, in the two considered models, by either the friction parameter or the coupling
parameter. We show that the reduced and original dynamics are exponentially close at any
time, and they coincide if we pass the parameter to the corresponding limit. We also prove that
the two dynamics have the same equilibrium measure and, furthermore, they exponentially
converge to the equilibrium measure with the same rate. This notable property is a direct con-
sequence of the proposed reduction scheme, in particular of the selection of solutions to the
invariance equation obtained from the Invariant Manifold method. As a consequence of this,
the spectrum of the reduced drift matrix is a subset of the spectrum of the original drift matrix.
The models and precise statements of the results are presented in sections 3 and 4.

The work is structured as follows. In section 2 we review the definition of the Wasserstein
distance between two probability measures and introduce the basic notation used throughout
the manuscript. In section 3 we compute our error estimate based on the Wasserstein dis-
tance for a Brownian harmonic oscillator, for which the laws of the original and the contrac-
ted descriptions are analytically known. In section 4 we apply our method to a slightly more
involved model, constituted by a pair of coupled overdamped Brownian harmonic oscillators.
Conclusions and a final outlook are finally drawn in section 5.

2. Preliminaries

In this section we introduce the Wasserstein distance between two probability measures and
also fix the notation used throughout the manuscript.

2.1. Wasserstein distance

In this section we recall the definition of the Wasserstein distance between two probability
measures and its explicit formula when the two probability measures are Gaussian distribu-
tions. The Wasserstein metric plays an central role in many research fields such as optimal
transport, partial differential equations and data science. For a detailed account of the topics,
we refer the reader to Villani’s monograph [Vil03].

LetP2(Rd) be the space of probabilitymeasuresµ onRd with finite secondmoment, namelyˆ
Rd

|x|2µ(dx)<∞.

Let µ and ν be two probability measures belonging to P2(Rd). The L2-Wasserstein distance,
W2(µ,ν), between µ and ν is defined via

W2
2(µ,ν) := inf

γ∈Γ(µ,ν)

ˆ
Rd×Rd

|x− y|2 γ(dx,dy), (1)

where Γ(µ,ν) denotes the set of all couplings between µ and ν, i.e. the set of all probability
measures on Rd×Rd having µ and ν as the first and the second marginals respectively. More
precisely,

Γ(µ,ν) := {γ ∈ P(Rd×Rd) : γ(A×Rd) = µ(A) and γ(Rd×A) = ν(A)},

for all Borel measurable sets A⊂ Rd.
In particular, the Wasserstein distance between two Gaussian measures can be computed

explicitly in terms of the means and covariance matrices [GS84], see also e.g. [Tak12]

W2(N (u,U),N (v,V))2 = |u− v|2 + trU+ trV− 2tr
√
V

1
2UV

1
2 , (2)
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where u,v are the means and U,V are the covariance matrices. In a one dimensional space, the
above formula reduces to

W2(N (u1,σ
2
1),N (u2,σ

2
2)

2 = (u1 − u2)
2 +(σ1 −σ2)

2. (3)

2.2. Linear drift-diffusion equations

We recall here a well-known result concerning the explicit solution of a general linear drift-
diffusion where the initial data is a Gaussian distribution. In the subsequent sections, we will
apply this result to our models of (coupled) Brownian oscillators.

To set the stage, we consider the following general linear drift-diffusion equation

∂tρ=−div(Cxρ)+ div(D∇ρ), ρ(0) = ρ0. (4)

In the above equation, the unknown is a probability measure ρ= ρ(t,x) with (t,x) ∈ (0,∞)×
Rd; C andD are two constant matrices of order d representing the drift and diffusion matrices;
the initial data ρ0 is a probability measure on Rd.

The following lemma provides the explicit formula for the solution of (4) when the initial
data is a Gaussian distribution, see for instance [GP18].

Lemma 2.1. Suppose the initial data is a Gaussian, ρ0 ∼N (µ(0),Σ(0)), then the solution
to (4) is given by

ρ(t,x) =
1√

(2π)d detΣ(t)
exp
[
− 1

2
(x−µ(t))TΣ−1(t)(x−µ(t))

]
(5)

where µ(t) and Σ(t) are given by

µ(t) := etCµ(0), Σ(t) := etCΣ(0)etC
T

+ 2
ˆ t

0
esCDesC

T

ds. (6)

Under suitable conditions on C and K, we have µ(t)→ 0 and Σ(t)→ Σ∞ where

Σ∞ := 2
ˆ ∞

0
esCDesC

T

ds.

Note that Σ∞ satisfies the so-called Lyapunov equation

2D= CΣ∞ +Σ∞C
T.

2.3. Exponential of a 2× 2 matrix

Lemma 2.1 provides the explicit form of the unique solution to the linear drift-diffusion
equation (4) when the initial data is a Gaussian. However, in general the formula (6) is analytic-
ally hard to compute since it involves exponential of matrices. The following lemma provides
an explicit formula for the exponential of a 2× 2 matrix, which will be used in the subsequent
analysis.

Lemma 2.2. Let a,b,c,d ∈ R be taken arbitrarily with a2 + b2 + c2 + d2 > 0. The following
identity holds

exp

(
a b
c d

)
=

1
∆

(
m11 m12

m21 m22

)
, (7)

4
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where ∆ :=
√
(a− d)2 + 4bc and

m11 := e(a+d)/2
[
∆cosh

1
2
∆+(a− d)sinh

1
2
∆
]
,

m12 := 2be(a+d)/2 sinh
1
2
∆,

m21 := 2ce(a+d)/2 sinh
1
2
∆,

m22 := e(a+d)/2
[
∆cosh

1
2
∆+(d− a)sinh

1
2
∆
]
.

Proof. We refer the reader to [BS93] for a justification of the formula (7).

3. Model reduction of a Brownian oscillator

To start off the discussion, we begin with the investigation of a simple model of an under-
damped Brownian oscillator considered in [CM22], which is amenable to an explicit analytical
solution. The original dynamics reads as follows:

dx(t) = v(t)dt

dv(t) =−ω2x(t)dt− γv(t)dt+
√

2γβ−1 dW(t),

(x(0),v(0)) = (x0,v0).

Exploiting the Invariant Manifold method and the Fluctuation–Dissipation relation (for a short
summary of the method, see section 4 below, where the same reduction procedure is applied
to a system of coupled overdamped Brownian harmonic oscillators), the reduced dynamics
attains the form:

dx̄(t) =−αx̄(t)dt+
√

2Dr dW(t), x̄(0) = x0,

where

α=
γ−

√
γ2 − 4ω2

2
, Dr =

α

ω2β
.

The reader is referred to [CM22] to see the details of the calculations. The main result of this
section is the following theorem.

Theorem 3.1.(i) (Exact solutions of the original and the reduced dynamics) µt and µ̄t are
Gaussian measures

µt =N (m(t),σ(t)), µ̄t =N (m̄t, σ̄(t)), (8)

5
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where

m(t) =
λ1e−λ2t−λ2e−λ1t

λ1 −λ2
x0 +

e−λ2t− e−λ1t

λ1 −λ2
v0,

σ(t) =
γβ−1

(λ1 −λ2)2

[λ1 +λ2

λ1λ2
+

4
λ1 +λ2

(e−(λ1+λ2)t− 1)− 1
λ1
e−2λ1t− 1

λ2
e−2λ2t

]
,

m̄(t) = e−λ2tx̄0,

σ̄(t) =
1

ω2β
(1− e−2λ2t)

where

λ1 =
γ+

√
γ2 − 4ω2

2
, λ2 =

γ−
√
γ2 − 4ω2

2
=

2ω2

γ+
√

γ2 − 4ω2
. (9)

(ii) (Exact Wasserstein distance between the laws of the original and reduced dynamics) The
Wasserstein distance between µt and µ̄t can be computed explicitly via

W2
2(µt, µ̄t) = (m(t)− m̄(t))2 +

(√
σxx(t)−

√
σ̄(t)

)2
. (10)

(iii) (Explicit rate of convergence in the high-friction limit) It holds that

W2
2(µt, µ̄t)⩽

4
γ2 − 4ω2

[
(ω|x0|+ |v0|)2 +

4
β

]
∀t> 0. (11)

As a consequence,
lim

γ→+∞
W2

2(µt, µ̄t) = 0.

Note that (11) is a much stronger statement providing an explicit rate of convergence.
(iv) (Common rates of convergence to equilibrium) There exists a constant C> 0, which can

be found explicitly, such that
W2(µt,µ∞), W2(µ̄t, µ̄∞)⩽ Ce−λ2t,

where

µ∞ = µ̄∞ =N
(
0,

1
βω2

)
.

This result shows that the original dynamics and the reduced one not only share the same
equilibrium, they have the same rates of convergence to equilibrium in the Wasserstein
distance.

(v) (long-time behavior) It holds that

W2
2(µt, µ̄t)⩽

[ω|x0|+ |v0|√
γ2 − 4ω2

+
10

β(γ2 − 4ω2)

]
e−λ2t. (12)

As a consequence of this, we also have
lim

t→+∞
W2(µt, µ̄t) = 0,

which is already obtained in the previous part. Estimate (12) is a stronger statement,
showing that the two dynamics are exponentially close at any time t> 0.

(vi) Suppose that the initial data x0 is randomly distributed according to an even probability
measure ρ0 ∈ L1(R) then the estimates in parts (iii) and (iv) still hold true.

Proof. (i). The law ρt of z(t) =

(
x(t)
v(t)

)
satisfies the kinetic Fokker Planck equation

∂tρt = L ∗ρt, ρ|t=0 = δ(x0,v0),

where L ∗ρ :=−v∂xρ+ω2x∂vρ+ γ
[
∂v(vρ)+β−1∂2

vvρ
]
.

6
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According to [Risken, section 10.2]µt is a bivariate Gaussianmeasure withmeanM(t) ∈ R2

and covariance matrix Σ(t) ∈ R2×2. They are t dependent objects given by

M(t) =

(
mx(x)
mv(t)

)
, Σ−1(t) =

(
[σxx(t)]−1 [σxv(t)]−1

[σvx(t)]−1 [σvv(t)]−1

)
,

where

mx(t) =
λ1e−λ2t−λ2e−λ1t

λ1 −λ2
x0 +

e−λ2t− e−λ1t

λ1 −λ2
v0,

mv(t) = ω2 e
−λ1t− e−λ2t

λ1 −λ2
x0 +

λ1e−λ1t−λ2e−λ2t

λ1 −λ2
v0,

σxx(t) =
γβ−1

(λ1 −λ2)2

[
λ1 +λ2

λ1λ2
+

4
λ1 +λ2

(e−(λ1+λ2)t− 1)− 1
λ1
e−2λ1t− 1

λ2
e−2λ2t

]
,

σxv(t) =
γβ−1

(λ1 −λ2)2
(e−λ1t− e−λ2t)2,

σvv(t) =
γβ−1

(λ1 −λ2)2

[
λ1 +λ2 +

4λ1λ2

λ1 +λ2
(e−(λ1+λ2)t− 1)−λ1e

−2λ1t−λ2e
−2λ2t

]
,

where

λ1 =
γ+

√
γ2 − 4ω2

2
, λ2 =

γ−
√
γ2 − 4ω2

2
, thus λ1 +λ2 = γ,

λ1λ2 = ω2, λ1 −λ2 =
√
γ2 − 4ω2. (13)

Note that, since in the overdamped regime γ ⩾ 2ω, we have

λ2 =
γ−

√
γ2 − 4ω2

2
=

4ω2

2(γ+
√
γ2 − 4ω2)

⩽ 4ω2

4ω
= ω.

Since z(t) is a bivariate Gaussian, it follows that the law of x(t), which is the first marginal
of z(t), is a univariate Gaussian measure, µt =N (m(t),σ(t)), with mean m(t) = mx(t) and
variance σ(t) = σxx(t), where mx(t) and σxx(t) are defined above. Using (13) we can re-write
m(t) and σ(t) as follows

m(t) = e−λ2tx0 +
e−λ2t− e−λ1t

λ1 −λ2
(λ2x0 + v0), (14)

σ(t) =
γβ−1

(γ2 − 4ω2)

[
γ

ω2
+

4
γ
(e−γt− 1)− 1

λ1
e−2λ1t− 1

λ2
e−2λ2t

]
(15)

=
1

βω2 [1− 4(ω/γ)2]

(
1− e−2λ2t

)
+

γβ−1

(γ2 − 4ω2)

[
4
γ
(e−γt− 1)− e−2λ1t− e−2λ2t

λ1

]
, (16)

where in the last equality we have used the following equality

1
λ1
e−2λ1t+

1
λ2
e−2λ2t =

(λ1 +λ2)e−2λ2t

λ1λ2
+

(e−2λ1t− e−2λ2t)

λ1

=
γe−2λ2t

ω2
+

(e−2λ1t− e−2λ2t)

λ1
.

7
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The reduced dynamics is an Ornstein–Uhlenbeck process, therefore its law is a Gaussianmeas-
ure, µ̄t =N (m̄(t), σ̄2(t)), with mean

m̄(t) = e−αtx0 = e−λ2tx0, (17)

and variance

σ̄(t) =
Dr

α
(1− e−2αt) =

1
ω2β

(1− e−2λ2t). (18)

(ii) Using the general explicit formula for the Wasserstein distance between two univariate
Gaussian measures, we obtain the Wasserstein distance between the original dynamics and
the reduced dynamics, W2

2(µt, µ̄t), as follows

W2
2(µt, µ̄t)

2 =
(
mx(t)− m̄(t)

)2
+
(√

σxx(t)−
√
σ̄(t)

)2
, (19)

(iii) We now provide estimate for W2
2(µt, µ̄t) in the high-friction regime, which corresponds

to a large time-scale separation, since the difference λ1 −λ2 =
√
γ2 − 4ω2 grows with γ for

fixed ω. We have

m(t)− m̄(t) =
e−λ2t− e−λ1t

λ1 −λ2
(λ2x0 + v0). (20)

Therefore, since |e−λ2t− e−λ1t ⩽ |e−λ2t|+ |e−λ1t|⩽ 2,

|m(t)− m̄(t)|⩽ 2√
γ2 − 4ω2

(
λ2|x0|+ |v0|

)
⩽ 2√

γ2 − 4ω2

(
ω|x0|+ |v0|

)
.

Next we estimate |σ(t)− σ̄t|. Since

|e−γt− 1|⩽ e−γt+ 1⩽ 2, |e−2λ1t− e−2λ2t|⩽ e−2λ1t+ e−2λ2t ⩽ 2, γ1 ⩾
γ

2

we have ∣∣∣ 4
γ
(e−γt− 1)− e−2λ1t− e−2λ2t

λ1

∣∣∣⩽ 4
γ
|e−γt− 1|+ |e−2λ1t− e−2λ2t|

λ1
⩽ 12

γ
.

Therefore,

|σ(t)− σ̄(t)|=
∣∣∣∣1− e−2λ2t

βω2

[ 1
1− 4(ω/γ)2

− 1
]
+

γβ−1

(γ2 − 4ω2)

×
[ 4
γ
(e−γt− 1)− e−2λ1t− e−2λ2t

λ1

]∣∣∣∣ (21)

=

∣∣∣∣1− e−2λ2t

β

4(1/γ)2

1− 4(ω/γ)2
+

γβ−1

(γ2 − 4ω2)

[ 4
γ
(e−γt− 1)− e−2λ1t− e−2λ2t

λ1

]∣∣∣∣
⩽ 4

β(γ2 − 4ω2)
+

12
β(γ2 − 4ω2)

=
16

β(γ2 − 4ω2)
.

8
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It follows that

W2
2(µ,µ̄) =

(
m(t)− m̄(t)

)2
+
(√

σ(t)−
√
σ̄(t)

)2
⩽
(
mx(t)− m̄(t)

)2
+ |σxx(t)− σ̄(t)|

⩽ 4
γ2 − 4ω2

(ω|x0|+ |v0|)2 +
16

β(γ2 − 4ω2)

=
4

γ2 − 4ω2

[
(ω|x0|+ |v0|)2 +

4
β

]
,

where to obtain the second line from the first line, we have used the inequality (a− b)2 ⩽
|a2 − b2| for a,b⩾ 0.

(iv) We have

lim
t→∞

m(t) = lim
t→∞

m̄(t) = 0 ∀x0,v0; lim
t→∞

σ(t) =
1

βω2
=: σ∞;

lim
t→∞

σ̄(t) =
1

βω2
=: σ̄∞ = σ∞.

Thus the original dynamics and the reduced one share the same equilibrium measure

µ∞ = µ̄∞ =N (0,σ∞).

Furthermore, we compute the rates of convergence explicitly

W2(µt,µ∞)2 = (m(t)−m∞)2 +(
√
σ(t)−

√
σ∞)2

⩽ m(t)2 + |σ(t)−σ∞|

=

(
e−λ2tx0 +

e−λ2t− e−λ1t

λ1 −λ2
(λ2x0 + v0)

)2

+
γβ−1

(γ2 − 4ω2)

×

∣∣∣∣∣ 4γ e−γt− 1
λ1
e−2λ1t− 1

λ2
e−2λ2

∣∣∣∣∣
= e−2λ2t

(
x0 +

1− e−(λ1−λ2)t

λ1 −λ2
(λ2x0 + v0)

)2

+
γβ−1

(γ2 − 4ω2)
e−2λ2t

×
∣∣∣ 4
γ
e−2λ1t− 1

λ1
e−2(λ1−λ2)t− 1

λ2

∣∣∣
⩽ Ce−2λ2t,

for some constant C, which can be computed explicitly (but it is not the focus of this part),
where we have used the fact that λ1 > λ2 > 0. Thus

W2(µt,µ∞)⩽ Ce−λ2t.

Similarly

W2(µ̄t, µ̄∞)2 = (m̄(t)− m̄∞)2 +
(√

σ̄(t)−
√
σ̄∞

)2
⩽ m̄(t)2 + |σ(t)−σ∞|

= e−2λ2t
[
x20 +

1
βω2

]
.

9
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Thus we also obtain

W2(µ̄t, µ̄∞)⩽ Ce−λ2t.

(v) Now we estimate W2
2(µt, µ̄t) in the large time regime. We only need to estimate the

difference between the variances |σ(t)− σ̄(t)|. According to (21), we have

σ(t)− σ̄(t) =
1− e−2λ2t

βω2

[ 1
1− 4(ω/γ)2

− 1
]
+

γβ−1

(γ2 − 4ω2)

[ 4
γ
(e−γt− 1)− e−2λ1t− e−2λ2t

λ1

]
=−e−2λ2t

βω2

[ 1
1− 4(ω/γ)2

− 1
]
+

γβ−1

(γ2 − 4ω2)

[ 4
γ
e−γt− e−2λ1t− e−2λ2t

λ1

]
where, to obtain the second line, we have used the following cancellation

1
βω2

[ 1
1− 4(ω/γ)2

− 1
]
− γβ−1

(γ2 − 4ω2)

4
γ
= 0.

Therefore, it holds

|σ(t)− σ̄(t)|⩽ e−2λ2t

βω2

[ 1
1− 4(ω/γ)2

− 1
]
+

γβ−1

(γ2 − 4ω2)

[ 4
γ
e−γt+

e−2λ2t− e−2λ1t

λ1

]
.

(vi) Now, we can estimate the Wasserstein distance W2
2(µt, µ̄t) to explore the long time

behavior, viz.

W2
2(µt, µ̄t) =

(
m(t)− m̄(t)

)2
+
(√

σ(t)−
√

σ̄(t)
)2

⩽
(
mx(t)− m̄(t)

)2
+ |σxx(t)− σ̄(t)|

⩽ e−λ2t− e−λ1t

λ1 −λ2
(ω|x0|+ |v0|)+

e−2λ2t

βω2

[ 1
1− 4(ω/γ)2

− 1
]

+
γβ−1

(γ2 − 4ω2)

[ 4
γ
e−γt+

e−2λ2t− e−2λ1t

λ1

]
=

4
β(γ2 − 4ω2)

e−γt+

[
ω|x0|+ |v0|√
γ2 − 4ω2

+
4

β(γ2 − 4ω2)
+

γ

βλ1(γ2 − 4ω2)

]
e−λ2t

−

[
ω|x0|+ |v0|√
γ2 − 4ω2

+
γ

βλ1(γ2 − 4ω2)

]
e−λ1t

⩽
[
ω|x0|+ |v0|√
γ2 − 4ω2

+
8

β(γ2 − 4ω2)
+

γ

βλ1(γ2 − 4ω2)

]
e−λ2t

⩽
[
ω|x0|+ |v0|√
γ2 − 4ω2

+
10

β(γ2 − 4ω2)

]
e−λ2t.

Here we have used the fact that γ ⩾ λ2 and
γ
λ1

= 2γ

γ+
√

γ2−4ω2
⩽ 2.

(vi). Suppose that x0 is randomly distributed following an even distribution ρ0. Then the
laws of x(t) and x̄(t) are given by

µt =N (m(t),σ(t)) ∗ ρ0, µt =N (m̄(t), σ̄(t)) ∗ ρ0.

Since N (m(t),σ(t)),N (m̄(t), σ̄(t)) ∈ P2(R), according to [San15, lemma 5.2] we have

W2
2(µt, µ̄t) =W2

2(N (m(t),σ(t)) ∗ ρ0,N (m̄(t), σ̄(t)) ∗ ρ0)⩽W2(N (m(t),σ(t)),N (m̄(t), σ̄(t)),

thus the upper bound estimates in the two previous parts are still true.
10
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4. Model reduction of two coupled underdamped Brownian oscillators

We now proceed with the computation of theWasserstein distance for a slightly more elaborate
model, corresponding to a system of two coupled overdamped Brownian harmonic oscillators.
The dynamics of the model can conveniently be written as follows:

ẋ1 = ax1 + k(x2 − x1)+σ1Ẇ1 (22a)

ẋ2 =−k(x2 − x1)+ dx2 +σ2Ẇ2, (22b)

where Ẇ denotes the formal derivative of a Wiener process, corresponding to a white noise,
a,d< 0 are parameters characteristic of the individual oscillator (without loss of generality
we also assume a⩾ d), σ1,σ2 > 0 denote the noise strenghts, and finally, k> 0 is the coupling
parameter.

The system (22) represents the overdamped version of the coupled underdamped Langevin
dynamics of the two oscillators. A contracted description for the deterministic case (i.e. with
σ1 = σ2 = 0) under a suitable assumption of scale separation is studied, with applications to
relaxation dynamics in proteins, in [SMR11]. We can derive a reduced system by eliminat-
ing the variable x2, in (22), using the procedure introduced in [CM22, CDM22]. This con-
sists of two distinct steps: (i) the deterministic component of the dynamics is obtained using
the Invariant Manifold method, then (ii) the diffusion terms are determined via fulfilling the
Fluctuation–Dissipation relation.

4.1. Deterministic evolution

Let ⟨O⟩ denote the average over noise of the variable O. The original dynamics can be
written as

ż=Q z , (23)

where z= (⟨x1⟩,⟨x2⟩) and

Q=Q(k) =

(
a− k k
k −k+ d

)
(24)

The characteristic polynomial of Q is

λ2 − (a+ d− 2k)λ+(ad− ak− dk) = 0.

Thus Q has two real negative eigenvalues:

λ± = λ±(k) :=
(a+ d− 2k)±

√
(a− d)2 + 4k2

2
. (25)

In this model, the time-scale separation is encoded in the difference λ+ −λ− =√
(a− d)2 + 4k2, which grows with increasing k, for fixed parameters a,d. We seek a closure

of the form ⟨x2⟩= α⟨x1⟩, hence, following [CDM22], we define a macroscopic time derivative
of ⟨x2⟩ via the chain rule:

∂macro
t ⟨x2⟩ :=

∂⟨x2⟩
∂⟨x1⟩

⟨ẋ1⟩

= (α(a− k)+α2k)⟨x1⟩ ,

11
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which expresses the slaving principle mentioned in section 1. Furthermore, we also define the
microscopic time derivative of ⟨x2⟩ in terms of the vector field given in equation (23), where
⟨x2⟩ is expressed through the aforementioned closure. We thus set:

∂micro
t ⟨x2⟩ := k⟨x1⟩+(d− k)⟨x2⟩

= (k+α(d− k))⟨x1⟩ .

The Invariant Manifold method requires that microscopic and macroscopic time derivat-
ives of ⟨x2⟩ coincide, independently of the values of the observable ⟨x1⟩. Thus, we obtain the
following invariance equation

α(a− k)+α2k= k+α(d− k) ⇐⇒ kα2 +(a− d)α+ k= 0 , (26)

which has two solutions

α± = α±(k) :=
−(a− d)±

√
(a− d)2 + 4k2

2k
.

The reduced dynamics for the deterministic part is

⟨ẋ1⟩= (a− k+ kα̂)⟨x1⟩ , (27)

where α̂ ∈ {α+,α−} which will be specified later. It is noticeable that

a− k+ kα± =
(a+ d− 2k)±

√
(a− d)2 + 4k2

2
≡ λ± .

Looking at (27), we notice that the coefficient multiplying ⟨x1⟩ coincides with one of the eigen-
values of the matrix Q. To pick up the right eigenvalue, we use the following criterion. We
select α̂ from solutions α± to the invariance equation (26) that satisfies a− k+ kα̂→ a< 0
as k→ 0, that is kα̂→ 0 as k→ 0. Since we assume that a⩾ d, we take

α̂= α+ =
−(a− d)+

√
(a− d)2 − 4k2

2k
.

4.2. Incorporating the noise

To characterize the noise term, we employ the methodology proposed in [CDM22]. Therefore,
we first define the diffusion matrix D as

D=

(
σ1 0
0 σ2

)
, (28)

and we also denote

Ẇ= (Ẇ1,Ẇ2) .

The solution of equation (22) reads:

z(t) = eQtz0 +
ˆ t

0
eQ(t−s)D Ẇds . (29)

We thus find

lim
t→∞

E[z1(t)2]≡ Σ11 =−1
2

( 1
a− 2k

+
1
a

)
.

The full reduced system takes hence the form

dx̂(t) = λ+x̂(t)dt+ D̂dWt , (30)

12
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where the drift coefficient λ+ is defined in (25) and the diffusion coefficient D̂ is given by

D̂=−λ+Σ11 . (31)

4.3. Quantification of errors and the long-time behavior

In this section we will compute explicitly theWasserstein distance between the laws of the ori-
ginal dynamics of x1 and of the reduced dynamics (30) and study their long-time behavior. The
Fokker Planck equation associated to the full original dynamics (22) is given by the following
linear-drift diffusion equation

∂tρ=−div(Qρ)+ div(D∇ρ), (32)

where ρ= ρ(t,x1,x2) is the joint probability density of (x1,x2), the drift matrix Q and the
diffusion matrix D are given in (24) and (28) respectively. Note that the above system is a
special case of the general drift-diffusion equation introduced in section 2.2.

Since we are focusing on the role of the coupling parameter, for simplicity of presentation,
we consider identical oscillator, that is a= d< 0 and normalising σ1 = σ2 = 1, so that

Q=

(
a− k k
k a− k

)
, and D= I.

The main result of this section is the following theorem.

Theorem 4.1. Let ρ1(t) be the distribution of x1(t) of the original coupled dynamics (30) start-
ing at a deterministic initial data (x1,x2)(0) = (x1,x2), and ρ̂1(t) be the distribution of the
reduced dynamics (30) starting from x1. Then there exists a constant C> 0 such that the fol-
lowing statements hold

(i) W2(ρ1(t), ρ̂1(t))2 ⩽ Ck.
(ii) max{W2(ρ1(t),ρ∞),W2(ρ̂1(t),ρ∞)}⩽ Ceat, where ρ∞ =N (0,Σ11)
(iii) W2(ρ1(t), ρ̂1(t)⩽ Ceat.

Proof. According to lemma 2.1, the solution to (32) is given by ρ(t,x1,x2) =N (µ(t),Σ(t)),
where

µ(t) = etQ
(
x1
x2

)
, Σ(t) = 2

ˆ t

0
esQesQ

T

ds.

Since QQT =QTQ and Q=QT, we have

esQesQ
T

= es(Q+QT) = e2sQ.

Thus, we can simplify Σ(t) as

Σ(t) = 2
ˆ t

0
e2sQ ds.

Applying lemma 2.2, we compute

etQ =
1
∆

(
m11 m12

m21 m22

)
, ∆= 2kt,

m11 = m22 = e(a−k)t∆cosh
1
2
∆=

1
2
e(a−k)t∆(ekt+ e−kt) =

1
2
∆(e(a−2k)t+ eat)

m12 = m21 = 2kte(a−k)t sinh
1
2
∆=

1
2
∆e(a−k)t(ekt− e−kt).=

1
2
∆(eat− e(a−2k)t).

13
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Thus

etQ =
1
2

(
e(a−2k)t+ eat eat− e(a−2k)t

eat− e(a−2k)t e(a−2k)t+ eat

)
.

Similarly

e2tQ =
1
2

(
e2(a−2k)t+ e2at e2at− e2(a−2k)t

e2at− e2(a−2k)t e2(a−2k)t+ e2at

)
.

Therefore,

Σ(t) = 2
ˆ t

0
e2sQ ds=

1
2

(
e2(a−2k)t−1

a−2k + e2at−1
a

e2at−1
a − e2(a−2k)t−1

a−2k
e2at−1
a − e2(a−2k)t−1

a−2k
e2(a−2k)t−1

a−2k + e2at−1
a

)
.

It follows that

ρ1(t) =N (µ1(t),Σ11(t)) =N

(
1
2

(
(e(a−2k)t+ eat)x1 +(eat− e(a−2k)t)x2

)
,

1
2

(e2(a−2k)t− 1
a− 2k

+
e2at− 1

a

))
,

Since x̂ is an OU process, we obtain

ρ̂1(t) =N (µ̂1(t), Σ̂1(t)) =N
(
eλ+tx1,−

D̂
λ+

(1− e2λ+t)
)
=N

(
eλ+tx1,Σ11(1− e2λ+t)

)
,

recalling that, with a= d

λ+ =
(a+ d− 2k)+

√
(a− d)2 + 4k2

2
= a, Σ11 =−1

2

( 1
a− 2k

+
1
a

)
.

The Wasserstein distance between ρ1 and ρ̂1 is given by

W2(ρ1(t), ρ̂1(t))
2 = (µ1(t)− µ̂1(t))

2 +
(√

Σ11(t)−
√

Σ̂1(t)
)2

(33)

(i) We compute

|µ1(t)− µ̂1(t)|=
1
2

∣∣∣(e(a−2k)t+ eat)x1 +(eat− e(a−2k)t)x2
)
− eatx1

∣∣∣
=

1
2
|(eat− e(a−2k)t)(x2 − x1)|

=
1
2
eat|x2 − x1|(1− e−2kt) (34)

⩽ |x2 − x1|keatt

⩽ k |x2 − x1|
1
|a|e

,

where in the first inequality we have used the elementary inequality 1− e−x ⩽ x for all x> 0,
and in the last inequality we have used (noting that a< 0)

max
t>0

teat =
1
|a|e

. (35)

14
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We also estimate

Σ11(t)− Σ̂1(t) =
1
2

[
1

a− 2k

(
e2(a−2k)t− e2λ+t

)
+

1
a

(
e2at− e2λ+t

)]

=
1
2

1
a− 2k

(
e2(a−2k)t− e2at

)
=

1
2

1
2k− a

e2at
(
1− e−4kt

)
(36)

⩽ 2k
2k− a

e2att

⩽ k
a2e

,

where to go from (36) to the next line, we have used 1− e−4kt ⩽ 4kt and (35) again (with a
replaced by 2a). Therefore, we have

W2(ρ1(t), ρ̂1(t))
2 ⩽ (µ1(t)− µ̂1(t))

2 +
∣∣∣Σ11(t)−Σ1(t)

∣∣∣
⩽ k2 |x2 − x1|2

1
|a|2e2

+
k
a2e

⩽ Ck,

for any bounded k.
(iii) Since a< 0,

lim
t→∞

µ1(t) = lim
t→∞

µ̂1(t) = 0, lim
t→∞

Σ11(t) =−1
2

( 1
a− 2k

+
1
a

)
=Σ11.

it implies that

lim
t→∞

ρ1(t) = lim
t→∞

ρ̂1(t) = ρ∞ =N (0,Σ11).

We can also compute explicitly the rates of convergence of these limits in the Wasserstein
distance. We have

W2(ρ1(t),ρ∞)2 = µ1(t)
2 +
(√

Σ11(t)−
√
Σ
)2

⩽ µ1(t)
2 +
∣∣∣Σ11(t)−Σ11

∣∣∣.(37)
We estimate each term on the right hand side of (37). For the first term, we get

µ1(t) =
1
2

(
(e(a−2k)t+ eat)x1 +(eat− e(a−2k)t)x2

)
=

1
2
eat
(
(1+ e−2kt)x1 +(1− e−2kt)x2

)
⩽ Ceat. (38)

For the second term, we have

|Σ11(t)−Σ11|=
1
2

∣∣∣e2(a−2k)t

a− 2k
+
e2at

a

∣∣∣= 1
2
e2at
∣∣∣1
a
+

e−4kt

a− 2k

∣∣∣⩽ Ce2at. (39)

Substituting (38) and (39) to (37), we obtain

W2(ρ1(t),ρ∞)⩽ Ceat,

15
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thus ρ1 exponentially converges, with a rate a, to ρ∞. Similarly,

W2(ρ̂1(t),ρ∞)2 = ρ̂1(t)
2 +
(√

Σ̂1(t)−
√
Σ11

)2
⩽ ρ̂1(t)

2 +
∣∣∣Σ̂1(t)−Σ11

∣∣∣
= (x21 +Σ11)e

2at.

Hence ρ̂1 exponentially converges with the same rate a to ρ∞.
(iv) According to (34) and (36) we have

|µ1(t)− µ̂1(t)|=
1
2
eat|x2 − x1|(1− e−2kt)⩽ Ceat,

|Σ11(t)− Σ̂1(t)|=
1
2

1
|2k− a|

e2at
(
1− e−4kt

)
⩽ Ce2at.

Thus

W2(ρ1(t), ρ̂1(t))
2 ⩽ (µ1(t)− µ̂1(t))

2 + |Σ11(t)− Σ̂1(t)|⩽ Ce2at,

that is

W2(ρ1(t), ρ̂1(t))⩽ Ceat.

This completes the proof of this theorem.We remark that we have assumed deterministic initial
data, but the theorem can also be extended to the case where the initial data follow symmetric
distributions as in section 3.

5. Summary and outlook

In this work we have employed the reduction scheme recently introduced in [CM22, CDM22],
which suitably combines the InvariantManifold method with the Fluctuation–Dissipation rela-
tion, to derive a contracted description for two classical models of statistical physics, namely
the underdamped Brownian harmonic oscillator and a system of two coupled overdamped
Brownian harmonic oscillators. The present work significantly extends the previous results:
we succeeded here to quantify explicitly the error between the original and the reduced dynam-
ics, as well as their rates of convergence to equilibrium. The technical tool we used is the
Wasserstein distance, which is widely employed in the theory of optimal transport. We have
thus shown that the two dynamics are exponentially close at any time, share the same equi-
librium measure, and exponentially converge to the same equilibrium measure with the same
rate. Furthermore, the two dynamics are also found to coincide if the relevant parameter con-
trolling the time-scale separation of the original model is sent to infinity. The linearity of the
considered models has clearly played an important role in the analysis of this work, enabling
the explicit computations of their solutions and of the involved Wasserstein distances. A key
challenge for future developments is to generalize our analysis in order to deal with non-linear
models, where explicit solutions and computations are not accessible. Another direction of
research points toward the investigations of systems with a large numbers of degrees of free-
dom, e.g. models relevant to climate dynamics [HAK23], or small systems of interest in mod-
ern nanotechnologies, such as biomolecular motors [WKST16].
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