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ABSTRACT

Software architecture consistency checking (SACC) is a popular
method to detect architecture degradation. Most SACC techniques
require software engineers to manually map a subset of entities of
a system’s implementation onto elements of its intended software
architecture. Manually creating such a “seed mapping” for complex
systems is a time-consuming activity.

The objective of this paper is to investigate if creating seed
mappings semi-automatically based on mapping recommendations
for training automatic, machine learning-based mappers can reduce
the effort for this task.

To this end, we applied InMap, a highly accurate, interactive
code-to-architecture mapping approach, to create seed mappings
for five open source system with known architectures and mappings.
Three different machine learning-based mappers were trained with
these seed mappings and analysed regarding their predictive per-
formance. We then compared the manual effort involved in using
the combination of InMap and the most accurate automatic mapper
and the manual effort of mapping the systems solely with InMap.

The results suggest that InMap, with a minor adaption, can be
used to seed an accurate mapper based on Naive Bayes. A full
mapping with only InMap though turns out to involve slightly less
manual effort on average; this is, however, not consistent across all
systems. These results give reason to assume that more advanced
ways of combining automatic mappers with InMap may further
reduce that effort.
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1 INTRODUCTION

The implementations of software systems tend to diverge from the
intended architecture over time. This effect is known as software
architecture degradation [18]. It can have dire consequences such
as a continuous decay of the affected system’s maintainability and a
decreased ability of the system to meet other desired quality proper-
ties. This, in turn, may lead to extensive and costly re-engineering
efforts or expensive re-developments of systems [6, 9, 19, 25].

Software architecture consistency checking (SACC) is one ap-
proach to mitigate software architecture degradation [17]. SACC
techniques promote frequent checks for inconsistencies between
the intended software architecture of a system and its current im-
plementation. Architecture degradation can be detected early this
way and software engineers can take actions against it in time.

Most popular and commercially successful SACC techniques,
such as reflexion modelling or related techniques, require some
sort of mapping between entities of the source code, such as code
files or classes, and elements of the intended architectures, such as
modules [10, 17]. In reflexion modelling, for example, code entities
are mapped to architectural modules in order to be able to automat-
ically analyse source code dependencies and compare them with
dependency constraints stated by the architecture [12]. Creating
and maintaining this mapping are complex and time-consuming
tasks because they require a deep understanding of the system at
hand. This is particularly true in scenarios in which a complex
system has to be initially and fully mapped to enable SACC in the
first place. Practitioners indeed expressed in an empirical study
by Ali et al. that the efforts associated with code-to-architecture
mapping are an obstacle to adoption of SACC in practice [1].

Several approaches exist to (semi-)automate this mapping activ-
ity and to hence reduce the manual effort required to perform it
[3-5, 14]. Many of the recent and best performing approaches uti-
lize machine learning (ML) [8, 14]. Identifying the “correct” module
for a source code entity can be understood as a multiclass classifica-
tion problem that those approaches treat as a supervised learning
task. Based on an initial seed mapping of a fraction of source code
entities that serve as the training set, a classifier is trained that
attempts to predict the architectural module that the remaining
source code entities should be mapped to.

However, even creating this initial seed mapping can be a time-
consuming activity. Previous results suggest that this mapping
should contain at least approximately 15% of the overall number of
source code entities to result in a satisfactorily accurate mapper [8,
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14]. For large systems with thousands of entities, this still requires a
significant effort. Research also shows that there is a huge variation
in precision and recall depending on which entities are used as a
seed, and that the question of what constitutes a good seed mapping
is not easy to answer universally [14].

In this paper, we investigate the use of InMap for the creation of
seed mappings for ML-based mappers. InMap is an highly accurate,
interactive approach that does not need an initial seed mapping -
at the price that user interaction is required to refine the mapping
incrementally [22, 23]. A hybrid approach, consisting of InMap cre-
ating the seed mapping and a ML-based mapper with high precision
and recall could reduce the effort for mapping a complete system
significantly.

To this end, we conducted an experiment using InMap in two dif-
ferent ways to create seed mappings of different sizes for five open-
source systems. Three different types of classifiers were trained
based on these seed mappings. The classifiers’ predictive perfor-
mance was compared to base line classifiers trained on random
seed mappings. The efficiency, in terms of manual effort involved,
of combining InMap with these classifiers was compared with the
effort using InMap for mapping the systems completely.

The remaining paper is structured as follows. Section 2 covers
background and related work. In Sec. 3, we will explain the experi-
mental setup. The results of the experiments are presented in Sec. 4
and discussed in Sec. 5. The paper is concluded in Sec. 6.

2 BACKGROUND

In this section, we briefly introduce the foundations of InMap,
which is the approach to create seed mappings in the conducted
experiment, and provide an overview of related approaches.

2.1 InMap

InMap is an interactive approach to code-to-architecture mapping
based on information retrieval. The targeted type of architectural
models corresponds to the concept of “high-level” models in re-
flexion modelling [12]. These models consist of architectural mod-
ules and intended, or allowed, dependencies between the modules.
Source code entities, such as source code files, are mapped to archi-
tectural modules. The main property of InMap that distinguishes it
from other techniques to automate this mapping is that it does not
need a manually created seed mapping. The central idea achieving
this property is to exploit module descriptions, i.e., descriptions
of a module’s purpose, which can often be found in architectural
documentation or retrieved during architecture recovery sessions.
This description, the name of a module, and textual information
extracted from the set of source code files already mapped to the
module (which is empty in the beginning) are transformed into a
search query, which is executed for the set of unmapped source
code files (corresponding to a corpus of documents in information
retrieval terminology). The query execution results in scores for
each unmapped file indicating how relevant the file is w.r.t. the
query. The assumption is that the higher the score for a file, the
more likely a mapping to the module represented by the query
might be. InMap computes this score for each combination of a
file and architectural module, extracts the highest scoring combi-
nation for each file, and presents the best scoring combinations as
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recommendations in descending order. The user can then accept
or reject the presented recommendations. This feedback is then
used by InMap to refine the queries, re-compute the scores and pro-
vide new recommendations. In an evaluation with six open-source
system, InMap showed a precision of 0.82 and a recall of 0.97 on
average and outperformed other mapping techniques requiring
seed mappings [23].

2.2 Related Work

Christl et al. proposed an interactive approach to code-to-architecture
mapping based on two different attraction functions that aim at
determining how likely it is that a source code unit “belongs” to
an architectural module based on dependencies [4, 5]. Building on
the same overall interactive approach, Bittencourt et al. presented
new attraction functions based on textual information and infor-
mation retrieval concepts instead. They noticed that a combination
of dependency-oriented and textual attraction functions worked
best in general [3].

Florean et al. compared three ML-based classifiers for the use in
code-to-architecture mapping with different ways of preprocessing
code and evaluated their performances for different sizes of seed
mappings [8]. The results suggested that Naive Bayes is inferior to
Logistic Regression and SVM for this task, and that seed mappings
consisting of at least of ten files per module, or seed mappings of at
least 15% of the total source code files, are required for satisfactorily
performing classifiers.

Olsson et al. presented an approach based on textual classifica-
tion with Naive Bayes [14]. In their technique, information about
dependencies in source code and architecture are encoded in the
textual representation of source code entities such that both type of
information, dependencies-focused and textual, can be considered
by a single technique. This eliminates the need for an aggregation
or weighting of separate models that might be hard to generalize
across systems and use cases. In a comparative evaluation, this ap-
proach showed significantly better performance than the previously
described approaches.

While this approach was outperformed by InMap in its original
form, Olsson et al. showed that using module key words, describing
the purpose of an architectural module in a precise way, could be
used to create a seed mapping that showed increase precision and
recall, even slightly outperforming InMap [16]. The same authors
also investigated the question which properties of source code files
might indicate that files should be included in the seed mapping in
order to make the subsequent automatic mapping as accurate as
possible [16]. They found in a single case study that the inclusion of
classes exhibiting a high dependency fan-out in the seed mapping
led to better automatic mapping results in general [13].

The purpose of the RELAX approach presented by Link et al.
is to support architectural recovery [11]. Any textual document
contributing to, or documenting, a software system is used to train a
classifier that can classify implementation entities according to the
architectural concern they contribute to. In contrast to the previous
listed approaches, in which training of classifiers is based on system-
specific data, an essential part of the motivation of RELAX is to
resuse classifiers for common architectural concerns across systems.
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Table 1: The subject systems.

l System #files LOC #modules
Ant 738 86,685 15
ArgoUML 763 111,626 17
JabRef 852 88,562 6
Jittac 117 8,012 9
TeamMates 321 102,072 6

In a comparison with two other clustering approaches, RELAX
performed best for the majority of the evaluated systems.

3 EXPERIMENTAL DESIGN

In this section, we describe the motivating research questions and
the protocol of the experiment aiming to address them.

3.1 Research Questions

The research questions for this study are defined as follows:

e RQ 1: How well do ML-based mappers performed if they are
trained with automatically recommended seed mappings?

e RQ 2: How efficient are ML-based mappers trained that way
in comparison to mapping the full system based on automat-
ically recommended mappings?

The focus of the first research question is whether or automatically
recommended mappings can be used to train accurate classifiers
for mapping the remaining entities of a systems’s implementation.
An important assumption we make in this context is that accepting
or rejecting mapping recommendations is less demanding and less
time-consuming than manually figuring out correct mappings. The
second question focuses on investigating whether the manual effort
in using those automatic mappers is lower than the manual effort
needed to check and accept/reject automatic recommendations.

3.2 Subject Systems and Classifiers

For this study, we needed access to software systems with the
following requirements

o The source code of the system is accessible.

o A model of the intended architecture, reflecting the system’s
modules and having been validated by expert of the systems,
exists.

o Short descriptions of the modules’ purposes exist.

We picked five open-source systems meeting these criteria from
the replication package of a previous study by Florean et al. [8].
The original sources for the mappings for these systems can either
be found in the repository of the SAEroCon workshop series! or
the repository of the s4rdm3x tool [15]. Table 1 lists these systems.

Similar to the study mentioned above, we focused on three tex-
tual classifiers, namely Naive Bayes (NB), Support Vector Machines
(SVM), and Logistic Regression (LR) due to their ability to work
with small amount of data (in particular Naive Bayes) and their
performance in comparative studies [20, 21].
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[Train & Evaluate Mappers w/|
modified InMap

Figure 1: Visualisation of the experiment protocol.

3.3 Experiment Protocol

We chose InMap as the approach for recommending seed mappings
as InMap itself does not need seed mappings to operate (see. Sec. 2).
As Step 1 in the experiment (see Fig. 1), we run InMap for all
five systems. The tool as provided in the replication package of the
corresponding paper operates in an experimental mode in which the
recommendations computed by InMap are compared with an oracle
mapping such that manual interactions are not required [23]. All
mapping recommendations, complemented by information about
their correctness w.r.t the oracle mapping, are exported as a list in
the order they are provided.

In Step 2, we train and evaluate three classifiers following the
methodology by Florean et al [8]. For all systems and classifiers,
we train and validate 100 models following a Monte-Carlo cross
validation scheme with stratification for different training set (i.e.,
seed mapping) sizes provided as fraction of the total number of
source code entities. We measure precision and recall and take the
average of these metrics across the 100 trained models to have a
baseline value for the subsequent steps. In order to account for the
varying sizes of classes in this classification problem, i.e., the num-
ber of source code units mapped to modules, we take the weighted
average variant of both metrics. These variants weigh each class’
precision and recall according to its relative size compared to the
overall data points and average the resulting value across all classes.
The weighted average recall is equivalent to the accuracy of a clas-
sifier 2. For simplicity, we refer to the metrics simply as precision
and recall in the remaining text.

In Step 3, for each relative seed mapping size r selected in step
2, we pick the first n = [e - r] correct recommendations from the
InMap result list for each system (e being the total number of im-
plementation entities, i.e., source code files, in the system). The
precision of InMap in creating this seed mapping, i.e., n divided

!https://github.com/sebastianherold/SAEroConRepo/wiki

2The accuracy of predictions in a multiclass classification problem is defined as
2 TPc¢
ceC "

correctly classified in class ¢, and n being the total number of predictions. The
weighted average recall sums up the recalls per class weighted by their relative size:

Z TPc
ceC

TPc+FN¢
rectly classified. A reduction of the fractions results in the expression for accuracy.

with C being the set of all classes, TP; being the number of instances

. w with FN being the number of instances of class ¢ incor-
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Table 2: InMap results for mapping all systems completely
(#REC=number of recommendations made, #CREC=number
of correct recommendations).

l System [ #Files [ #REC [ #CREC [ Precision [ Recall ‘
Ant 738 1037 722 0.70 0.98
ArgoUML 763 1010 758 0.75 0.99
Jabref 852 882 837 0.95 0.98
Jittac 117 137 109 0.80 0.93
TeamMates 321 272 259 0.95 0.81

by the total number of recommendations needed to get those n
correct recommendations, is computed as measurement of the ef-
fort for creating the seed mapping. For each of the systems, each
classifier is trained on the set of mappings recommended in these
n recommendations. The performance is again measured in terms
of precision and recall.

Step 4 is a repetition of the previous step with a modification of
the way the seed mapping is created. We noticed before the actual
experiment execution that InMap shows tendencies to favour some
of the modules in a system when making recommendations. This
means that certain modules tend to be mapped much quicker than
others. The seed mapping could therefore be very imbalanced and
might only cover a certain subset of modules, which, in turn, could
affect the predictive performance of the trained classifiers. Instead of
picking the n best ranked recommendations, we therefore pick [ <]
correct mappings® for each module, m being the number of modules
in the intended architecture of the system. From a user perspective,
this corresponds to having a list of mapping recommendations per
module to select from, instead of a single system-wide list as in the
original InMap approach. The validation of the resulting classifiers
trained with these seed mappings follows the same procedures as
in Step 3.

3.4 Replication Package

The scripts to run the experiments described above and to visualise
the results can be accessed at https://github.com/sebastianherold/
inmap-seed-mapping.

4 RESULTS

The results of mapping the five systems through InMap alone (Step
1) are shown in Tab. 2. As (source code) files are the units, for which
InMap generates recommendations, the number of files indicates
the minimal number of recommendations that the user would have
to inspect in case InMap finds a recommendation for each file. In-
Map achieves an average precision of 0.83 and and average recall
of 0.94 whereby precision varies among systems more than recall.
Translated to a hypothetical system with 1, 000 files, for which In-
Map shows exactly this average performance, the results suggest
that for 940 files the correct mappings would be identified after
having presented and evaluated 940 % 1/0.83 = 1, 133 recommenda-
tions.

Table 3 shows the results for creating random seed mappings
of different sizes between 5 — 25% of the total number of files in

3or as many as possible if the module is smaller
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Table 3: Baseline values for precision and recall for all classi-
fiers at different relative seed mapping sizes (100 split Monte
Carlo cross-validation).

[ [ [ Weighted avg. precision Weighted avg. recall

[ System | Class. [ 0.05]0.10] 0.15]0.20 [ 0.25 [] 0.05 [ 0.10 [ 0.15 [ 0.20 [ 0.25 |
LR. [0.62[0.74]0.79[0.83[0.85] 0.57[0.70 [ 0.77 [ 0.81 | 0.83
Ant NB [0.60 | 0.65 | 0.67 | 0.69 | 0.70 || 0.58 | 0.62 | 0.65 | 0.67 | 0.69
SVM |0.61|0.75|0.81 | 0.84 | 0.87 || 0.56 | 0.71 | 0.78 | 0.82 | 0.85
LR 0.70 [ 0.79 [ 0.84 [ 0.86 | 0.88 ][ 0.67 [ 0.77 [ 0.82 | 0.85 | 0.87
ArgoUML |NB | 0.75|0.81|0.83 | 0.84 | 0.85 || 0.74 | 0.79 | 0.82 | 0.83 | 0.85
SVM | 0.66 | 0.76 | 0.82 | 0.84 | 0.87 || 0.64 | 0.74 | 0.80 | 0.83 | 0.86
LR 0.86 | 0.91 | 0.92]0.94 | 0.94 || 0.84 | 0.90 [ 0.92 [ 0.93]0.94
Jabref NB [0.84|0.87|0.89 | 0.90 | 0.90 || 0.83 | 0.87 | 0.88 | 0.89 | 0.89
SVM |0.85|0.92|0.93 | 0.94 | 0.95 || 0.84 | 0.91 | 0.93 | 0.94 | 0.95
LR 0.48 [0.70 [ 0.78 [ 0.85 | 0.88 ][ 0.46 | 0.62 [ 0.72 [ 0.81 | 0.86
Jittac NB | 0.66 |0.84|0.87|0.89 | 0.89 || 0.74 | 0.82 | 0.85 | 0.88 | 0.88
SVM | 0.47 | 0.66 | 0.75 | 0.83 | 0.87 || 0.45 | 0.60 | 0.70 | 0.79 | 0.85
LR 0.60 [ 0.78 [ 0.84 [ 0.87 [ 0.89 [ 0.61 | 0.75 | 0.82 [ 0.85 | 0.88
TeamMates | NB | 0.66 | 0.79 | 0.82 | 0.84 | 0.85 || 0.66 | 0.78 | 0.81 | 0.82 | 0.84
SVM |0.58 | 0.75| 0.81 | 0.85 | 0.87 || 0.59 | 0.74 | 0.80 | 0.84 | 0.86

Table 4: Precision of recommendations provided by standard
InMap (single ranked list of recommendations) for creating
seed mappings of different relative sizes.

| System / Rel. seed size | 0.05 [ 0.10 [ 0.15 [ 0.20 [ 0.25 |
Ant 0.82 ] 0.87 [ 0.91]0.91[0.93
ArgoUML 0.83 | 0.88 | 0.91 | 0.92 | 0.93
Jabref 0.83 | 0.89 | 0.91 | 0.92 | 0.94
Jittac 0.86 | 0.75 | 0.78 | 0.80 | 0.83
TeamMates 0.77 | 0.85 | 0.84 | 0.87 | 0.88
Avg. 0.82 ] 0.85 | 0.87 | 0.88 | 0.90

the five software systems (Step 2, see Sec. 3. As would be expected,
precision and recall generally increase with seed mapping size as
the seed mapping corresponds to the training set; increasing the
volume of data available for training a classifier can generally be
expected to improve the classifier’s predictive performance. LR and
SVM perform on par in terms of precision and recall while NB show
slightly lower precision and recall in four systems, and significantly
lower values for Ant. The average precision values at a relative seed
mapping size of 0.25 are 0.89 for LR, 0.84 for NB, and 0.88 for SVM;
average recall is 0.88 for LR, 0.83 for NB, and 0.87 for SVM. NB
performs slightly better than the other classifiers for the smallest
relative seed set size of 0.05.

Next, we created seed mapping of different sizes based on In-
Map’s recommendations as described for Step 3 in Sec. 3. In order to
judge the effort required to create that seed mapping, i.e., the num-
bers of recommendations to be manually checked, we computed
the precision of InMap. The results are shown in Tab. 4.

Table 5 shows the precision and recall scores in this setting for
the same systems, classifiers, and seed mapping sizes as used in
the baseline mapping with InMap alone (see Tab. 2). We observe a
sharp drop in both precision and recall. At a relative seed mapping
size of 0.25, the average precision values are 0.61 (—0.28 compared
to baseline) for LR, 0.63 (-0.21) for NB, and 0.57 (-0.31) for SVM.
The average recalls are 0.59 (—0.29) for LR, 0.62 (—0.21) for NB, and
0.58 (—0.29) for SVM.
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Table 5: Precision and recall of classifiers trained with seed
mappings of different relative sizes, generated by standard
InMap.

[ [ [ Weighted avg. precision Weighted avg. recall

[ System | Class. [ 0.050.10 [0.15 [ 0.20 [ 0.25 [[ 0.05 [ 0.10 [ 0.15 [ 0.20 [ 0.25 |
LR 0.410.42[0.46 [ 0.57 [ 0.56 [[ 0.15 | 0.36 | 0.50 | 0.48 | 0.57
Ant NB |0.49|0.45 (039|051 049 [ 052052052052 054
SVM |0.39 | 0.41 | 0.45 | 0.54 | 0.56 || 0.15 | 0.42 | 0.54 | 0.56 | 0.62
LR 0.03 [ 0.45 | 0.47 | 0.56 | 0.63 [ 0.13 | 0.43 [ 0.46 | 0.52 | 0.66
ArgoUML |NB | 0.03 | 0.47 | 0.61|0.63 | 0.63 || 0.14 | 0.55 | 0.57 | 0.65 | 0.67
SVM |0.03 | 0.43 | 0.43|0.53 | 0.61 || 0.13 | 0.47 | 0.46 | 0.52 | 0.65
LR 053 [0.79 [ 0.82]0.79 [ 0.85 [ 0.39 [ 0.68 [ 0.64 | 0.58 | 0.66
Jabref NB | 0.610.66|0.78 | 0.77 | 0.83 || 0.57 | 0.59 | 0.63 | 0.62 | 0.72
SVM | 0.50 | 0.74 [ 0.73 | 0.74 | 0.80 || 0.39 | 0.64 | 0.60 | 0.55 | 0.66
LR 0.35[0.27 [ 0.23]0.34 [ 0.36 || 0.28 [ 0.42 [ 0.42 | 0.44 | 0.43
Jittac NB | 0.49|0.60 | 0.55 | 0.53 | 0.54 || 0.57 | 0.56 | 0.54 | 0.54 | 0.52
SVM |0.33|0.25|0.22 [ 0.32 | 0.32 || 0.28 | 0.41 | 0.40 | 0.42 | 0.39
LR 0.55 | 0.57 | 0.66 | 0.64 | 0.64 | 0.28 [ 0.27 [ 0.27 | 0.56 | 0.65
TeamMates | NB | 0.64 | 0.64 | 0.65 | 0.61 | 0.64 || 0.62 | 0.56 | 0.58 | 0.65 | 0.66
SVM | 0.54 | 0.45 | 0.58 | 0.60 | 0.57 || 0.27 | 0.26 | 0.17 | 0.42 | 0.56

Table 6: Precision of modified InMap (based on per-module
rankings) for creating seed mappings of different relative
sizes.

| System / Rel. seed size [ 0.05 [ 0.10 | 0.15 [ 0.20 [ 0.25

Ant 1.00 | 1.00 | 1.00 | 1.00 | 0.99
ArgoUML 0.71 | 0.75 | 0.78 | 0.80 | 0.82
Jabref 0.67 | 0.76 | 0.80 | 0.84 | 0.86
Jittac 0.75 | 0.81 | 0.81 | 0.83 | 0.86
TeamMates 0.80 | 0.81 | 0.84 | 0.83 | 0.82
Avg. 0.79 | 0.83 | 0.85 | 0.86 | 0.87

In the last step of the experiment, we assume that InMap provides
recommendation on a per-module basis instead of a single, system-
wide list of recommendations. This means that recommendations
that would be further down that system-wide list can be picked
for creating a seed mapping in case they are among the higher
ranked ones for the module that they refer to. By doing so, the
resulting seed mapping is more balanced and provides training data
for possible classification outcomes (i.e., modules) as long as InMap
presents a recommendation. Table 6 shows the precision scores
achieved by this modified variant of InMap. The loss of precision
that could be expected because lower scoring, and hence potentially
more likely wrong, recommendations are picked as compared to
InMap’s default behaviour, is actually very low (see also Tab. 4) and
does not exceed 0.03.

The results show a moderate drop in precision for LR and SVM
in most systems and for most seed mapping sizes; the decrease in
precision is smaller for NB (Table 7). The average precision scores
at a relative seed mapping size of 0.25 are 0.79 (—0.10 compared
to baseline) for LR, 0.82 (—0.02) for NB, and 0.78 (-0.10) for SVM.
Average recalls are 0.52 (-0.36) for LR, 0.71 (—0.12) for NB, and
0.51 (—0.26) for SVM. As compared to using InMap stand-alone
for mapping the systems at hand, the precision of combining the
modified InMap with any of the classifiers is at a similar level. The
recall though is considerably lower.

1436

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

Table 7: Precision and recall of classifiers trained with seed
mappings of different relative sizes, generated by modified
InMap (using per-module recommendations).

[ [ [ Weighted avg. precision Weighted avg. recall

[ System | Class. [ 0.05]0.10] 0.15]0.20 [ 0.25 [] 0.05 [ 0.10 [ 0.15 [ 0.20 [ 0.25 |
LR 0.50 [0.58 [0.67 [ 0.72 [ 0.77 [[ 0.11 [ 0.14 [ 0.27 | 0.29 | 0.36
Ant NB [0.61]0.64|0.68]0.69|0.74 || 0.32 | 0.30 | 0.39 | 0.44 | 0.46
SVM | 0.49 |0.59 | 0.66 | 0.72 | 0.74 || 0.10 | 0.15 | 0.25 | 0.26 | 0.31
LR 0.58 [ 0.66 | 0.80 | 0.78 [ 0.78 [[ 0.24 [ 0.29 [ 0.45 | 0.48 | 0.52
ArgoUML |NB | 0.74 | 0.76 | 0.82 | 0.82 | 0.85 || 0.59 | 0.60 | 0.70 | 0.73 | 0.78
SVM | 0.56 | 0.68 | 0.83 | 0.80 | 0.78 || 0.24 | 0.30 | 0.43 | 0.45 | 0.47
LR 0.830.850.920.92]0.93][ 035037 [0.71 | 0.79 | 0.82
Jabref NB [0.89]0.930.93]0.95]0.95]|0.70 [ 0.73 | 0.75 | 0.78 | 0.82
SVM |0.82|0.84|0.92|0.94 | 0.93 || 0.33 | 0.37 | 0.78 | 0.81 | 0.83
LR 0.38 [ 0.56 | 0.56 | 0.73 [ 0.77 [[ 0.23 [ 0.33 [ 0.33 [ 0.48 | 0.45
Jittac NB |0.86|0.83|0.83|0.87|0.79 || 0.60 | 0.74 | 0.74 | 0.78 | 0.72
SVM |0.38 | 0.64 | 0.64 | 0.68 | 0.81 || 0.22 | 0.34 | 0.34 | 0.39 | 0.52
LR 0.62 [ 0.58 | 0.66 | 0.67 | 0.69 || 0.33 [ 0.36 | 0.44 | 0.47 | 0.45
TeamMates | NB | 0.71 | 0.74 | 0.76 | 0.75 | 0.79 || 0.70 | 0.71 | 0.73 | 0.71 | 0.78
SVM |0.59 | 0.55 | 0.54 | 0.61 | 0.65 || 0.33 | 0.34 | 0.30 | 0.33 | 0.40

5 DISCUSSION

In the following subsections, we discuss the results in the light of
the motivating research questions as well as potential threats to
validity.

5.1 Findings regarding RQ 1

We phrased RQ 1 as “How well do ML-based mappers performed if
they are trained with automatically recommended seed mappings?”.
The presented results suggest that a seed mapping generated with
standard InMap decreases the decreases the predictive performance
of all investigated classifiers significantly beyond the point of use-
fulness. Even with a seed size of 25% of the overall system, at which
both metrics generally indicate better results than at smaller seed
sizes, average precision stays below 0.61 and average recall peaks
at 0.62 (both for NB). A notable exception is Jabref, for which all
classifiers achieve a precision over 0.8 and recall between 0.66 and
0.72.

The reason for this drop in classification performance is most
likely due to the imbalanced representation of architectural modules
in the seed mappings. Figure 2 visualizes the distribution of modules
as targets of mappings contained in seed mappings at different seed
mapping sizes (0.1, 0.15, 0.2, 0.25) for Ant. For a relative size of 0.1
and 0.15, only five of the in total 15 modules of Ant are represented
in the seed mapping. This affects the training and performance
of the classifiers significantly as there is no training data for ten
of the modules. The resulting classifiers will not be able to map
entities belonging to these modules. In the example of Ant, all
classifiers show an improvement in precision when moving from a
relative seed mapping size of 0.15, representing only five modules
to 0.2, representing nine modules (see Tab. 5). The impact of this
imbalance, or rather the lack of it, might also explain the exceptional
behaviour for Jabref since four out of five architectural modules are
represented in the seed mapping at a relative size of 0.1 and higher
(see the visualization contained in the replication package).

The results also indicate that picking the best mapping recom-
mendations per module instead of selecting the best mapping from
a single, system-wide list of recommendations creates seed map-
pings better suited for training code-to-architecture mappers. All
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Figure 2: Example (Ant) of seed label distributions created by InMap.

three investigated mappers show improved precision, however,
only Naive Bayes also improves in recall compared to feeding the
seed mapping with the system-wide best recommendations. This is
an interesting contrast to Florean et al’s experiments with standard
InMap and their conclusion to favour LR or SVM over NB.

In conclusion, the results suggest that only mappers based on
NB, trained with a seed mapping on a best-per-module basis, show
sufficiently accurate mapping performance.

5.2 Findings regarding RQ 2

In order to address the question of how efficient the combinations
automatically recommended seed mappings and the presented clas-
sifiers are, we assume that the main aspect influencing the efficiency
of the mapping process is the amount of manual labour involved.
This means that compared to manual effort, time and resources
required for training classifiers, classification, running InMap, etc.,
are neglectable.

The manual work involved in creating a code-to-architecture
mapping with InMap is caused by two tasks: reviewing the provided
mapping recommendations and mapping any remaining unmapped
entities manually. A low precision causes a large effort for reviewing
as the overhead caused by inspecting incorrect mapping recom-
mendations is big. A low recall indicates that many entities remain
unmapped and require a manual mapping.

Table 8 shows the number of reviewed recommendations and
manually mapped entities for each of the five systems used in the
experiments. These values can easily be derived from the values
for the numbers of total files (entities to be mapped), numbers
of recommendations, and numbers of correct recommendations
shown in Table 2. Additionally, we look at a hypothetical system
(“HS”) with 1,000 entities to be mapped. The figures for HS assume
that InMap shows precision and recall for this system as averaged
over the other five systems (see Sec. 4). Given an average precision
of 0.94, sixty entities in HS would remain unmapped and need
manual mapping in such a scenario. In addition to the 940 correct
mapping recommendations, the imperfect average precision of 0.83
would cause an overhead of incorrect recommendations. The total
number of recommendations is calculated as the number of correct
recommendations divided by the precision.

For computing the overall effort, we assume that each instance of
of any of the two types of tasks requires the same constant amount
of units of effort, e.g., one unit. The total effort as depicted in Table 8
is then linearly correlated to the sum of reviewed recommendations
and manually mappings.
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Table 8: Manual efforts for mapping with InMap only.

Recommendations Manual | Total
System reviewed | Mappings | Effort
Ant 1,037 16 1,053
ArgoUML 1,010 5 1,015
Jabref 882 15 897
Jittac 137 8 145
TeamMates 272 62 334
HS 1,133 60 1,193

Combining seed mapping generation with InMap and automated
mapping of the remaining entities requires three manual tasks: Re-
viewing InMap’s recommendations for the seed mapping, reviewing
the automated mapping, and fixing wrong, automatically made map-
pings. The effort for reviewing the seed mapping recommendations
depends obviously on the size of the seed mapping and the precision
of InMap. The size of the seed mapping is inversely proportional
to the effort for reviewing the automated mapping as the more is
mapped in the seed, the fewer entities are mapped automatically
and require manual checks. The amount of effort caused by having
to fix mapping manually is obviously proportional to a classifier’s
accuracy (equivalent to its weighted average recall). Provided high
classification accuracy, one could argue against the proportionality
related to checking the automated mapping. This would be the case
if users started “blindly trusting” the automatic mapping because it
was only wrong in exceptional cases and rare mistakes would be
fixed later.

In Tab. 9, efforts are described for using the modified InMap
variant for the different seed mapping sizes and NB as classifier for
the subsequent automatic mapping. For the hypothetical system,
the numbers of seed mappings reviewed are computed based on
the precision of InMap as shown in Tab. 6. The number of reviewed
automatic mappings is result of subtracting the number of entities
covered in the seed mapping from the overall number of entities
in the system. From Tab. 7, we can compute average values of
(weighted average) recalls, or accuracy, for NB for each relative seed
mapping size. Those values can then be used to compute the number
of incorrect automatic mappings as the total number of automatic
mappings minus the correct ones, determined by multiplying the
total number by the accuracy of the automatic mapper.

As before, we assume that all instances of these tasks cause
the same constant amount of effort, i.e., one unit. A comparison
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Table 9: Manual efforts for combining InMap and NB.

Relative | Seedrec. | Autom. Mapp. | Mappings | Total
System seed size | reviewed Reviewed Fixed | Effort
Ant 0.05 45 693 471 1,209
Ant 0.10 73 665 466 1,204
Ant 0.15 106 632 386 1,124
Ant 0.20 124 614 344 1,082
Ant 0.25 148 591 319 1,058
ArgoUML 0.05 66 716 294 1,076
ArgoUML 0.10 99 689 276 1,064
ArgoUML 0.15 126 665 200 991
ArgoUML 0.20 148 645 175 968
ArgoUML 0.25 180 615 135 930
Jabref 0.05 61 811 243 1,115
Jabref 0.10 86 787 212 1,085
Jabref 0.15 108 764 191 1,063
Jabref 0.20 127 745 164 1,036
Jabref 0.25 149 724 130 1,003
Jittac 0.05 12 108 43 163
Jittac 0.10 21 100 26 147
Jittac 0.15 21 100 26 147
Jittac 0.20 29 93 20 142
Jittac 0.25 35 87 24 146
TeamMates 0.05 25 301 90 416
TeamMates 0.10 36 292 85 413
TeamMates 0.15 56 274 74 404
TeamMates 0.20 66 266 77 409
TeamMates 0.25 87 250 55 392
HS 0.05 63 950 399 1,412
HS 0.10 120 900 342 1,362
HS 0.15 176 850 289 1,315
HS 0.20 233 800 248 1,281
HS 0.25 287 750 218 1,255

between the efforts shown in Tab. 8 and Tab. 9 shows that combining
modified InMap with automatic mapping with NB as described
reduces the overall effort for ArgoUML (by ca. 8.4%) and Jittac (by
ca. 2.1%). For the other three systems, the combined approach lies
behind by 9.9% on average. For HS, the shortfall is about 5.2%.

We therefore state regarding RQ 2 that the investigated combi-
nation of InMap with the best-performing classifier might perform
similarly efficient in terms of manual effort required, and even
slightly better than InMap stand-alone. In other instances though,
the combined approach might fall behind significantly. On average,
the results suggest that using InMap stand-alone is more efficient.

5.3 Validity

The selection of subject systems poses a threat to external valid-
ity. The systems are small- to medium-sized desktop applications
that most certainly do not represent the full population of soft-
ware systems. The requirements of having a validated mapping to
compare mapping performance against and having descriptions of
architectural modules reduce the number of systems that could be
used off-the-shelf for a study like the presented one. Due to lack
of resources, creating mappings for a larger and more diverse set
of software systems was deemed unfeasible for this study. Instead
we opted for selecting the largest set of systems known to us that
fulfil the above requirements.

This implies another potential threat to external validity as all
systems are written in Java, which is another requirement imposed
by the tooling applied (InMap). We believe, however, that the re-
sults are generalizable to systems of similar size and written in
other statically typed and imperative/object-oriented languages.
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Missing type declarations, for example, might cause InMap to be
less effective and textual classification to be less accurate.

We limited the study to three types of classifiers only, which
is a potential threat to external validity. They were selected as
previous studies showed they performed reasonably well for the
task at hand and with small amount of data in general. With larger
systems, the use and comparison of different neural network ar-
chitectures could be one direction to extend the external validity
in this field of research. The same is true for using more advanced
code representation models, such as CodeBERT or code2vec [2, 7].

One implicit result of the conducted experiment is that selecting
the seed mapping on a best-per-module basis improves the pre-
dictive performance of automatic mappers We are confident that
the internal validity of the experiments is high as we repeated the
experiments for the three seed mapping generation methods with
identical values for other independent variables (such as InMap
settings, training setting, seed mapping sizes, etc.). Moreover, we
are very confident that no circumstantial or environmental changes
between experiments could have caused the observed changes in
predictive capabilities and efficiency.

A potential threat to construct validity is posed by the assump-
tion made to quantify the manual effort involved in mapping code
to architecture. In particular the assumption that fixing an incorrect
mapping or manually mapping an entity causes as much work as
reviewing mappings might be debatable. To the best of our knowl-
edge there is no empirical evidence to our knowledge that would
provide any quantitative data on this issue. We therefore decided
to present the detailed figures on effort for the different tasks such
that researchers can easily recalculate efforts based on their own
assumptions. Only empirical studies investigating how practition-
ers work with mapping recommendations and automatic mappers
could eventually provide evidence for more reliable assumptions.

6 CONCLUSION

The results obtained from the experiment described in this article
suggest that, on average, using InMap for creating seed mappings
for ML-based code-to-architecture mappers leads to mappers with
below-average predictive capabilities. Picking the seed mapping
from module-specific lists of recommendations instead of a system-
wide lists generally improves the observed precision. Naive Bayes
outperformed Logistic Regression and SVM when used in combi-
nation with InMap. This is contrasted by the results with random
seed mappings in which any of the two seemed to be the better
alternatives to Naive Bayes[8].

Furthermore, the manual effort in performing the mapping of a
full system seeded this way appears to be slightly higher than with
InMap alone. For individual systems, however, the trained auto-
matic mapper performs on par or slightly better than InMap stand-
alone. Further investigations are needed to understand the circum-
stances in which this way of hybrid mapping appears favourable.

In order to improve the generation of seed mappings, it may be
worthwhile to consider further information from source code in
future studies. Several studies by Olsson et al. move towards that
direction and suggest to initially map entities with high dependency
fan-out and use keywords as pointers for the mapping [13, 16].
Integrating this for manually mapping those potential “high-impact
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entities” even before the full seed mapping is created through InMap
might make the overall mapping even more efficient.

Another direction to increase efficiency could be to integrate
InMap and ML-based mappers incrementally in the sense that the
latter only returns a partial mapping of the “best” candidates, judged,
for example, based on the actual score that Naive Bayes computes.
This could be reviewed and fed back to InMap to start another cycle.
In this scenario, ML-based mappers are rather used as a recom-
mendation system in itself than as automatic mappers. Employing
methods of ensemble learning that integrate prediction of several
models (mappers), e.g., through voting, could be another mean to
improve automated code-to-architecture mapping [26].

Recent works on InMap propose hierarchical extensions to the
approach that recommend mapping for larger units of source code,
such as packages, instead of only considering atomic entities [24].
This might reduce the effort for the mapping drastically as long as
the structure in which the source code is organized hierarchically is
reasonably well-aligned with the intended software architecture of
a system. The combination of InMap recommending mappings for
hierarchical groups of implementation entities as one and machine
learning techniques has not been explored yet. More empirical stud-
ies are required to better understand the factors and steps driving
the effort in tool-supported code-to-architecture mapping. Such
studies are also necessary to better estimate the trade-off between
having to review automatically suggested mappings, finding map-
ping manually, and fixing incorrect automatic mappings.
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