
DQSOps: DataQuality Scoring Operations Framework for
Data-Driven Applications

Firas Bayram
firas.bayram@kau.se

Dept of Mathematics and Computer
Science, Karlstad University

Karlstad, Sweden

Bestoun S. Ahmed
bestoun@kau.se

Dept of Mathematics and Computer
Science, Karlstad University

Karlstad, Sweden
Department of Computer Science,

Czech Technical University
Prague, Czech Republic

Erik Hallin
Anton Engman

erik.hallin@uddeholm.com
anton.engman@uddeholm.com

Uddeholms AB
Hagfors, Värmlands län, Sweden

ABSTRACT
Data quality assessment has become a prominent component in the
successful execution of complex data-driven artificial intelligence
(AI) software systems. In practice, real-world applications generate
huge volumes of data at speeds. These data streams require anal-
ysis and preprocessing before being permanently stored or used
in a learning task. Therefore, significant attention has been paid
to the systematic management and construction of high-quality
datasets. Nevertheless, managing voluminous and high-velocity
data streams is usually performed manually (i.e. offline), making it
an impractical strategy in production environments. To address this
challenge, DataOps has emerged to achieve life-cycle automation
of data processes using DevOps principles. However, determining
the data quality based on a fitness scale constitutes a complex task
within the framework of DataOps. This paper presents a novel Data
Quality Scoring Operations (DQSOps) framework that yields a qual-
ity score for production data in DataOps workflows. The framework
incorporates two scoring approaches, an ML prediction-based ap-
proach that predicts the data quality score and a standard-based
approach that periodically produces the ground-truth scores based
on assessing several data quality dimensions. We deploy the DQ-
SOps framework in a real-world industrial use case. The results
show that DQSOps achieves significant computational speedup
rates compared to the conventional approach of data quality scor-
ing while maintaining high prediction performance.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Software
and its engineering → Software development techniques;
Software verification and validation.

KEYWORDS
Automated data scoring, DataOps, data assessment, data quality
dimensions, mutation testing

This work is licensed under a Creative Commons Attribution International
4.0 License.

EASE ’23, June 14–16, 2023, Oulu, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0044-6/23/06.
https://doi.org/10.1145/3593434.3593445

ACM Reference Format:
Firas Bayram, Bestoun S. Ahmed, Erik Hallin, and Anton Engman. 2023. DQ-
SOps: Data Quality Scoring Operations Framework for Data-Driven Appli-
cations. In Proceedings of the International Conference on Evaluation and As-
sessment in Software Engineering (EASE ’23), June 14–16, 2023, Oulu, Finland.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3593434.3593445

1 INTRODUCTION
In the era of big data explosion, data has become the most critical as-
set of artificial intelligence (AI) software projects [41]. The primary
motivation is that the data accompany machine learning (ML) soft-
ware throughout their life cycle. Notably, huge volumes of data are
being collected for industries and businesses at an ever-escalating
rate. The volume and velocity pose a formidable challenge for ML
software systems in production, which are required to make (near)
real-time decisions [53]. In real-life scenarios, the challenge is two-
fold: assessing the quality of the data flowing in the system and
processing it within defined time frames.

Data quality is not a new topic; its roots are traced back to the
literature on database management systems [56]. However, the ad-
vancement of data-driven systems has recently shifted the topic
towards AI research [5]. It is widely recognized that the perfor-
mance of ML projects is mainly dependent on the quality of the
underlying data [26]. Data quality is a multifaceted concept that
defines several quality dimensions based on the relative nature of
the problem [42]. Typically, data quality dimensions are identified
according to the context and domain, which implies that data qual-
ity dimensions may change with application. Each dimension of
the data quality measures the condition of the data concerning a
specific aspect which is usually summarized in a quality index or
metric that is used as an indicator of data validity [54].

Data quality scoring holds significant relevance in data quality
assessment and is defined as the methodology for obtaining a score
metric for each dimension of the data quality of a given set of ob-
servations in a dataset [52]. In the data quality scoring literature,
researchers investigate the procedures to measure and quantify the
different dimensions of data quality within the target application.
The scores are interpreted as the fitness scale corresponding to
certain data quality dimensions for each data record or chunk. Data
quality scores are used in data storage management or leveraged in
predictive ML software by introducing acceptability thresholds [38].
Acceptability thresholds filter out data instances that do not meet

32

https://orcid.org/0000-0003-0683-2783
https://orcid.org/0000-0001-9051-7609
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3593434.3593445
https://doi.org/10.1145/3593434.3593445
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593434.3593445&domain=pdf&date_stamp=2023-06-14

EASE ’23, June 14–16, 2023, Oulu, Finland Bayram F, et al.

quality standards. As a result, the data quality scoring methodol-
ogy enables the characterization of data records according to their
quality through quantitative analysis.

The conventional procedure for data quality scoring is executed
through a code that manually inspects and validates the condition
of the data with respect to the defined data quality dimensions [51].
However, this traditional procedure is resource intensive, especially
if the number of data quality dimensions is high, and generally
requires human intervention [43]. Furthermore, in deployment
environments, this manual procedure is not practical for ML soft-
ware that should perform tasks automatically [33]. Recently, the
DevOps principles, continuous integration and continuous delivery
(CI/CD), have been adopted and introduced to build productionized
ML software, known as Machine Learning Operations (MLOps)
[28]. MLOps systems allow the deployment of ML software in a
formalized way throughout the life-cycle of AI applications [7]. An
indispensable element of MLOps is DataOps, which is the approach
that manages and processes the production data systematically and
continuously. DataOps pipelines are designed to prepare accurate
and reliable data that the ML model will use. However, scoring
the streaming data windows is challenging and yet to be explored
within the context of DataOps for production systems that are
characterized by high sampling rates.

This paper contributes to the current advancement in theDataOps
field by presenting a novel Data Quality Scoring Operations (DQ-
SOps) framework that can be streamlined in DataOps workflows.
DQSOps can be viewed as a general data scoring methodology to
automate scoring the quality of streaming data. The generalizability
of DQSOps is enabled by incorporating configurable components
that can be easily adjusted and extended based on the problem. In
practical implementations, DQSOps accelerates scoring the quality
of acquired production data irrespective of the number of defined
quality dimensions. The speedup is achieved by employing an in-
novative ML predictor that determines the quality score of the
processed data window. Using an ML predictor rather than the stan-
dard data scoring methodology substantially reduces the overall
processing time. However, a test oracle is implemented to continu-
ously evaluate the ML accuracy throughout the system evolution to
sustain high performance for the ML predictor. The test oracle uses
ground-truth data quality scores that are periodically produced by
a standard-based approach. Additionally, we introduce a new data
mutation component, inspired by the mutation testing principles, to
simulate data quality issues in the data window, and thus facilitate
the initialization phase of our framework.

The rest of the paper is structured as follows: Section 2 reviews
the related work in the field and provides an overview of the data
quality scoring task. Section 3 presents the methodology used to de-
velop our data quality scoring framework. The experimental results
of our use cases are reported in Section 4. The threats to generalize
our proposed framework are discussed in Section 5. Finally, Section
6 concludes the paper with a summary of the remarks and future
perspective.

2 BACKGROUND AND PREVIOUS WORK
This section provides a general overview of data quality dimensions
and related definitions. Then we review studies devoted to assessing
data quality in the literature.

2.1 Data Quality Dimensions
Data quality dimensions are defined to assess the quality of the data.
Each dimension captures a specific characteristic of the evaluated
data within a particular task. Knight [31] has presented a combined
conceptual framework for the quality of information systems. ML
software concerns the relation between the system’s data and task
attributes in information systems. Therefore, contextual quality is
relevant to build an ML solution, as it is identified in the interactive
space between the data of a system and the attributes of the task
[19].

The contextual quality comprises five quality dimensions: value-
added, relevancy, timeliness, appropriate data and completeness [31].
However, since these quality dimensions are context-based, they
must be adapted to the task and the system’s characteristics. Wand
and Wang [55] described the dimensions of data quality as subjec-
tive and should be defined within the application of the system that
generates the data. In a more recent study, [52], these dimensions
have been revised for continuous quality management. The revised
data quality dimensions are: accuracy, completeness, consistency,
Timeliness. However, for evolving ML software systems, distribu-
tional changes are likely to occur during system evolution [39].
Therefore, we will extend these quality measures and include skew-
ness [15] to monitor the distribution of incoming data. Descriptions
of the data quality dimensions are provided with the following
definitions:

1. Accuracy:Measures whether the observed data value rep-
resents the actual value.

2. Completeness: Checks whether the observed data include
missing values.

3. Consistency: Verifies whether the observed values meet
the integrity constraints of the domain.

4. Timeliness: Describes whether the data are up-to-date for
the corresponding task.

5. Skewness: Computes the distribution deviation of the ob-
served data from a reference distribution.

2.2 Related Work
Data quality assessment has been the subject of many early works
in the literature [45]. Chug et al. [15] have proposed a method that
quantifies the quality of a given dataset. The method uses nine data
quality dimensions to estimate the quality of the dataset. As a result,
the method provides a score, report, and label for the data quality
of the dataset. Similarly, for big data systems, Taleb et al. [52] pro-
posed the Big Data Quality Management Framework (BDQMF) to
address data quality issues in big data systems based on several data
quality dimensions. The framework included several components
to manage, validate, and monitor the data quality. Furthermore,
data quality issues were investigated both at the cell instance and
the schema levels of the dataset. BDQMF framework also quanti-
fies scores of data quality aspects. However, the authors did not
experimentally evaluate the framework. For business processes,

33

DQSOps: DataQuality Scoring Operations Framework for Data-Driven Applications EASE ’23, June 14–16, 2023, Oulu, Finland

Data Quality Validation Methodology (DQVM) was proposed to
evaluate the effects of data quality on the process outcome [10]. The
methodology allows domain experts to assign the corresponding
weights for each data quality dimension based on their relative
importance to the business process. The deviation of quality scores
is then observed between fault-free and fault-injected datasets, and
the impact on the process is eventually evaluated.

Other approaches have investigated quantifying an individual
data quality dimension. Heinrich et al. [25] proposed a quality met-
ric based on probability theory to assess semantic consistency. The
metric indicates the degree to which assessed data is contradiction-
free. Similarly, minimality, or uniqueness, was investigated to mea-
sure redundancies in data at the data- and schema-level [20]. The
method uses hierarchical clustering and similarity calculation tech-
niques to calculate the metric. For Internet of Things (IoT) systems,
Byabazaire et al. [9] presented a real-time data quality assessment
framework. To measure data quality, the framework uses trust as a
metric for quantification. The correlation between trust score and
root mean square error (RMSE) and mean absolute error (MAE) is
calculated using Pearson’s correlation coefficient to validate if trust
is a good indicator of data quality. With the limited approaches to
address data quality scoring in the context of production systems,
we design a framework that can be utilized efficiently in real-world
problem scenarios. The proposed framework can handle streaming
data with high sampling rates, as opposed to the existing methods
that are designed for offline static datasets. Additionally, our pro-
posed framework can effectively accommodate a high number of
quality dimensions.

3 DATA QUALITY SCORING OPERATIONS
(DQSOPS) FRAMEWORK

This section introduces the methodology to deliver our proposed
DQSOps framework. DQSOps can efficiently evaluate the quality of
production data streams based on quantitative analysis. The output
of DQSOps is a score metric that serves as an indicator of the overall
validity of the collected data window, and is calculated based on
assessing several data quality dimensions. The scores can be used
to rank the system data according to their quality. Thus they can
be selected for the various business analysis tasks that may require
different levels of data quality. In practice, DQSOps significantly
reduces the time to score the data window by employing an ML
predictor that replaces the conventional data scoring method. The
run time is irrespective of the number of quality dimensions, making
it convenient for real-world applications characterized by high
sampling rates. In addition, the performance of the ML predictor is
periodically evaluated by executing test oracles.

The overall pipeline of the presented framework is shown in
Figure 1. Upon receiving the data streams from data-generating
sources, the stream is segmented into windows of data samples
according to a pre-defined data window size. Inspired by the muta-
tion testing principles [27], we introduce a data mutant simulator
component to obtain full control over the experimental conditions.
The component is applied to simulate nonequivalent data mutants
within the data window according to pre-configured parameters
that are loaded from a configuration file that stores the pre-specified
mutation percentage of each data quality dimension. Nonequivalent

mutants are used to induce meaningful changes in the problem [50].
Typical examples of data mutants are missing or inconsistent data
values, or anomalies. Consequently, we utilize the data mutation
component to simulate erroneous data that would affect the data
quality according to the specified dimensions. Furthermore, the
component is especially useful during the initialization phase, as
will be discussed further in Section 3.3.

After preparing the data window, the method activator com-
ponent is invoked to activate the appropriate workflow path for
data scoring based on particular decisions. The criteria for selecting
the approach will be further detailed in Section 3.4. The candidate
quality scoring approaches are: the standard scoring method, a
regression ML model, or a retrain signal. The standard scoring
method calculates the ground-truth data quality scores of the de-
fined dimensions and stores it in a repository. Whereas the ML
model predicts the data quality score of each data window. If the
retrain signal is activated, the ML model will be retrained using
the ground-truth scores stored in the repository. During the re-
training process, both the current prediction- and standard-based
approaches will be used to score the data quality until the new
model is ready to replace the current one. Furthermore, the perfor-
mance of the regression model is continuously monitored using
a test oracle that evaluates the predicted data quality scores. The
next subsections will delve deeper into the mechanisms of the main
components of the DQSOps framework.

3.1 Scoring the Data Quality Dimensions
The standard-based approach is a core element of DQSOps and
used to quantify the ground-truth scores of the data quality di-
mensions that are used to train the ML model. Each data quality
dimension will be reflected in one quality score. In particular, this
score quantifies the level of fitness of the collected data window
with respect to the specific data quality dimension. The relevant
data quality dimensions are: accuracy, completeness, consistency,
timeliness, and skewness, as discussed in Section 2.1. As shown in
Figure 1, meta-information is loaded that helps calculate the scores
of the data quality dimensions from a configuration file. For in-
stance, meta-information may include the values that characterize
the integrity constraints of the specific problem, such as the maxi-
mum and minimum value limits. The configuration file could also
include the path of auxiliary files that supports the calculation of
some scores such as the anomaly detector or data distribution. After
calculating the data quality scores, all score values are standardized
between 0 and 1 using min-max normalization to obtain uniform
scales across the data quality dimensions, as discussed in the next
section. The data quality scores are retrieved as follows:

3.1.1 Accuracy Score. Accuracy score is calculated by finding the
proportion of the anomalous datum in the processed data window
[52]: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁𝐴𝑉

𝑁
, where 𝑁𝐴𝑉 is the total number of anoma-

lous values detected in the data window and 𝑁 is the size of the
data window. Anomalies may appear in the system due to several
factors, such as malicious activities, hardware failures, inaccuracies
in data collection, or adversarial attacks [12]. From a data quality
perspective, anomalous data records represent abnormal values of
unhealthy data instances and therefore are considered an indicator

34

EASE ’23, June 14–16, 2023, Oulu, Finland Bayram F, et al.

DQ1

DQ2

DQ3

DQn

Ground-truth
DQ score

Predicted DQ
score

Method
activator

Performance
evaluation

Configuration file

Mutant simulator

Data windowData source

Ground-truth DQ
score repository

ML model

Data quality dimensions

Configuration file

Retrain
signal

Test Oracle

Predicted DQ
score repository

Initialization step
Mandatory flow
Optional flow

Figure 1: DQSOps framework, the red path represents the initialization phase.

of low-quality data [49]. The anomaly detector can be obtained in
the initialization step; see Section 3.3.

3.1.2 Completeness Score. The fraction of missing values that are
observed in the data window and can be found as follows [24]:
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = 𝑁𝑁𝑉

𝑁
, where 𝑁𝑁𝑉 is the number of missing val-

ues such as NA (Not Available) or NULL observations and 𝑁 is the
size of the data window. Missing values are a popular problem of
data quality that could be an indicator of disconnection or damage
to the data source [46].

3.1.3 Consistency Score. The integrity constraints vary depending
on the domain and the application conditions. Therefore, they are
defined in problem-specific settings. For example, in some domains,
data observations cannot be negative or their values should fall
within a particular range. After defining the integrity rules for
the data values, the consistency score can be calculated as the
fraction of data values that do not meet the integrity constraints
[47]: 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 𝑁𝐶𝑉

𝑁
, where 𝑁𝐶𝑉 is the number of consistent

values and 𝑁 is the size of the data window. Data consistency is a
fundamental issue for data quality, as it checks data conflicts that
can detect errors in the data recording process [22].

3.1.4 Timeliness Score. Timeliness, or data currency, is a semantic
measure that characterizes whether the data fits the application
domain [29]. To quantify the timeliness of the data, we used a
goodness-of-fit test. Goodness-of-fit tests measure the likelihood
that current data are sampled from a specific cumulative distri-
bution function(cdf) or probability density function (pdf) of the
underlying data-generating distribution [2]. Several goodness-of-
fit test techniques can be applied according to the nature of the
data [17]. The most popular tests are the Kolmogorov-Smirnov,
Anderson-Darling, and Cramér-vonMises statistical tests [21]. Each
test calculates test statics that is interpreted for the fitness of the
data with the compared distribution.

In our experiments, a two-sample Kolmogorov-Smirnov statis-
tical test is used to calculate the goodness-of-fit metric. Kolmogorov-
Smirnov test is a non-parametric statistical tool to determinewhether
two samples are drawn from the same distribution [48]. The main
motivation for adopting the Kolmogorov-Smirnov test is that it
is a powerful method for small subsets [3], as in our use-case
settings. For two empirical cumulative distribution functions 𝐹1
and 𝐹2 for two independent random samples 𝑋 = 𝑋1, . . . , 𝑋𝑛 and
𝑌 = 𝑌1, . . . , 𝑌𝑚 respectively, the Kolmogorov–Smirnov test statistic

35

DQSOps: DataQuality Scoring Operations Framework for Data-Driven Applications EASE ’23, June 14–16, 2023, Oulu, Finland

is computed as [32]:

𝐾𝑆 = max
1⩽𝑖⩽𝑁

��𝐹1 (𝑍𝑖) − 𝐹2 (𝑍𝑖)
�� , (1)

where 𝑍 is the combined sample of 𝑋 and 𝑌 , 𝑁 = 𝑛 +𝑚.

3.1.5 Skewness Score. In real-world applications, especially the
Internet of Things (IoT), where data are collected from sensors,
distributional drift (or shift) is one of the most frequent data issues
in the system [23]. Data flows are validated against distributional
deviations that induce skewness in the data distribution [11]. To
calculate the distributional skewness score, the divergence mag-
nitude can be calculated to measure the dissimilarity between the
distributions of the current data window and the historical data [34].
There are numerous methods to calculate the divergence measure;
Jensen-Shannon (JSD) and Kullback-Leibler (KLD) Divergences are
the most popular ones [44].

For our framework, we have used the JSD metric to calculate the
skewness score. JSD metric is a symmetrization of the KLD metric.
The main property of JSD is that it is bounded in the interval
[0, 1], while the KLD value may be infinite [37]. According to JSD,
the dissimilarity between two probability distributions 𝑃 and 𝑄 is
calculated as [36]:

JSD(𝑃 ∥𝑄) = JSD(𝑃 ∥𝑄) := 𝐻

(
𝑃 +𝑄

2

)
− 𝐻 (𝑃) +𝐻 (𝑄

2
, (2)

where the function 𝐻 denotes Shannon’s entropy and is given by:

𝐻 (𝑝) = −
∫

𝑝 (Y) log 𝑝 (Y)𝑑Y. (3)

A final remark on the data quality dimensions defined in this
section is that other definitions can be introduced according to the
task. For example, accuracy, completeness, and consistency scores
can be defined as ‘1’ if the data window includes the correspond-
ing data quality issue and ‘0’ otherwise [6], rather than using the
fraction of erroneous data instances. This can be adopted in safety-
critical domains with a lower tolerance level for faulty data, such
as medical applications and autonomous cars [13]. In our industrial
use cases, using fractions of erroneous data is more suitable since
potentially dropping data instances (i.e., giving them a score of ‘1’)
is not preferred.

3.2 Finding the Consolidated Data Quality Score
After calculating the score values of the data quality dimensions,
the values are aggregated in a consolidated score that represents
the quality of the data window [16]. The most basic approach to
aggregate the metrics is by taking the arithmetic mean, or its vari-
ants, such as the weighted average, of the data quality dimensions.
However, it was argued that the arithmetic mean does not provide
sound aggregation [24]. Additionally, aggregation methods are sen-
sitive to the scales of the variables. Therefore, the calculation of
the aggregated metric will be dominated by the dimensions with
large scales, and the effect of the dimensions with low scales will
be negligible.

Before aggregating the quality scores, the matrix 𝐷𝑄𝑛𝑚 that
contains the quality scores of the 𝑛 data instance of𝑚 dimension
is standardized. The standardization step is essential before ag-
gregation so that the different data quality metrics can be equally
integrated into the overall quality score [18]. The standardization,

also known as whitening, can be achieved by calculating the z-score
of each element 𝑑𝑞𝑖 𝑗 of the matrix 𝐷𝑄𝑛𝑚 : 𝑧𝑖 𝑗 =

(𝑑𝑞𝑖 𝑗−` 𝑗)
𝜎 𝑗

, where
` 𝑗 is the mean ` 𝑗 is the standard deviation of the respective column.
The standardization process would give the different data qual-
ity dimensions uniform weights when calculating the aggregation
metric.

In a recent survey [53], it was shown that the principal compo-
nent analysis-based methods are the most widely used techniques
to detect data errors. Therefore, we follow the literature and use
principal component analysis (PCA) to extract the score that rep-
resents the overall quality of the data windows. PCA is a widely
used dimensionality reduction technique that extracts the most
crucial information from the data. PCA maps each data instance of
𝑑 dimensional space to 𝑘 dimensional space using an orthogonal
transformation such that 𝑘 < 𝑑 . The first principal component
is constructed by finding the direction of maximum variance [1].
The principal components of dataset 𝑋 are found by solving the
eigenvalue problem:

ΣM = _M, (4)

where Σ is the covariance matrix
∑

= 𝑋𝑋𝑇 that measures the
correlation between the variables of the original data 𝑋 , _ is the
vector of eigenvalues, and 𝑀 is the matrix of eigenvectors that
contains the principal components ordered by the size of their
eigenvalue.

3.3 Initialization Phase
Before deployment, the DQSOps framework requires preparing a
warm-start of the ML predictor using training data that includes
ground-truth quality scores. The initialization phase of DQSOps is
indicated in Figure 1 by the red path. Through this phase, a reliable
ML predictor will be delivered to be put into practice in production.
To produce the ML predictor, ground-truth labels are found, as
discussed in the previous sections, and stored in a repository that
will be used to train the ML model. The prediction accuracy of the
ML model is monitored until it reaches a predetermined threshold 𝜏
evaluated with respect to a performance metric. The ML predictor
is deployed in the real-world problem upon reaching this threshold.
In this phase, the mutant simulator component plays an essential
role in the learning task. The mutants would help the model learn
to identify data quality issues by providing the model with more
extensive and diverse quality issues that could potentially arise in
real-life environments. Furthermore, the component accelerates
the learning process, compared to waiting for data quality issues
that may not be frequent in reality, which can be time-consuming.

In addition to producing theML predictor, othermeta-information
files are prepared in this phase to be used in practice. These files
are the anomaly detection model used to calculate the accuracy
score and a reference data distribution used to calculate the skew-
ness score. These files should be prepared using high-quality clean
data to enhance the reliability of the ground-truth quality scores.
The paths of these files are then stored in the configuration file to
be loaded once the DQSOps framework is eventually deployed in
production.

36

EASE ’23, June 14–16, 2023, Oulu, Finland Bayram F, et al.

No

Performance metric

Yes

No

Chunk size

Retrain signal ML model

Performance evaluation

Data window

Test Oracle

Yes

Figure 2: Flowchart diagram of the method activator compo-
nent

3.4 Method Activator Component
One of the core elements of DQSOps is the method activator which
orchestrates the pipeline flow. As illustrated in the decision flow-
chart in Figure 2, the component uses a set of predetermined cri-
teria to execute the appropriate approach for data quality scoring.
Once the data window is collected, a decision is made based on
the chunk size. The activator repeatedly executes the ML model
to obtain the data quality scores until the chunk size reaches a
preconfigured threshold 𝛽 . Figure 3 illustrates the mechanism for
processing the data windows and chunks. The threshold 𝛽 repre-
sents how frequently we want to test the ML model performance.
Once the threshold is reached by collecting 𝛽 data windows, the
activator executes an evaluation methodology using the standard-
based approach. Subsequently, the standard approach produces the
ground-truth scores of 𝑛 data windows, where 1 ≤ 𝑛 < 𝛽 . This
is necessary to perform continuous monitoring of the ML model
performance.

The evaluation is conducted using a specified test oracle [35], as
shown in Figure 1. The specified test oracle requires oracle informa-
tion and oracle procedure [4]. The oracle information characterizes
the expected output, which is obtained by the ground-truth scores
by the standard-based approach. For the oracle procedure, a rele-
vant performance metric, such as the prediction error, is used to
evaluate the predicted quality score of the ML model using the ora-
cle information. Afterward, the result of the test oracle is forwarded
to the activator, which compares it with a tolerance level 𝜏 . The
level represents the minimum accuracy required to achieve and can
be set based on quality requirements or inferred by observing the
ML performance in the initialization phase; see Section 3.3. If the
performance of the ML model falls below the desired level, a retrain
signal is sent to update the MLmodel using the newly obtained data
quality scores. This strategy ensures the efficiency and reliability
of the ML model over time.

w

Time

w1

Test initiation points
Chunk of size

wwn w ww

Data windows Test termination point

Figure 3: Mechanism of processing the data streams

4 IMPLEMENTATION AND EVALUATION
The framework is applied and evaluated in a real-world industrial
use case. The production results are analyzed in terms of predic-
tive performance and time-efficiency criteria. An analysis of the
effects of the mutation percentage on the initialization phase is also
presented.

4.1 Industrial Use Case Description
The industrial use case in which we implement our framework is
the industrial process of Electroslag Remelting (ESR) vacuum pump-
ing at Uddeholm steel company in Sweden1. The vacuum pump is
used to ensure the production of high-quality steel. This is achieved
by extracting the air oxygen from the furnace. In production, each
vacuum pump event lasts up to 20 minutes. The observation of
interest is the pressure value generated inside the vacuum chamber.
To record the pressure values, a sensor is connected to the furnace
and registers the value every millisecond. The pressure data win-
dows are continuously transmitted every second through Apache
Kafka streaming platform2 to enable real-time analysis. The pres-
sure value should gradually decrease in a proper pump event until
it reaches the desired minimum value within 20 minutes. However,
in some cases, an improper pump event occurs, and the minimum
pressure value is not met so the furnace will be re-initiated. There-
fore, it is essential to distinguish the status of the pump events. The
task is to quantify the quality of the pressure data collected from
each pump event using the proposed DQSOps framework. For a
production environment, DQSOps is developed using Python pro-
gramming language and deployed in the system through a Docker
container3. The Docker ecosystem allows the deployment flexibly
and efficiently regardless of the underlying system. For ML models,
we use two popular decision tree-based algorithms, random forests
(RF) [8] and extreme gradient boosting (XGBoost) [14] models. RF
and XGBoost are two efficient ensemble algorithms that have been
widely used in various applications due to their simplicity, high
performance, and interpretability property, making them suitable
for industrial applications [30].

4.2 Predictive Performance Evaluation
The performance results of the prediction-based methods of our
framework are evaluated in the production environment of our use
case. These methods are based on the regression algorithm that
predicts the data quality score rather than calculating it using the

1https://www.uddeholm.com/
2https://kafka.apache.org/
3https://www.docker.com/

37

DQSOps: DataQuality Scoring Operations Framework for Data-Driven Applications EASE ’23, June 14–16, 2023, Oulu, Finland

Table 1: Average performance of the RF prediction-based
method

DQD MAE R2

mean std CV mean std CV

1 0.0148 0.0052 0.3529 0.7133 0.2111 0.2959
2 0.4142 0.0561 0.1353 0.7325 0.2289 0.3125
3 0.5604 0.0928 0.1656 0.7978 0.1353 0.1696
4 0.6411 0.1032 0.1610 0.8435 0.0362 0.0430
5 0.6132 0.0000 0.0000 0.8936 0.0000 0.0000

standard approach. The performance is evaluated using two perfor-
mance metrics, the mean absolute error (MAE) and the coefficient
of determination 𝑅2 given by the formulae:

MAE =

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖 |

𝑛
, (5)

𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖)

2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)

2 , (6)

where𝑦𝑖 is the ground-truth score calculated using the oracle-based
approach, 𝑦𝑖 is the predicted value using the regression algorithm,
and 𝑦 represents the mean of all scores.

Table 1 shows the performance of the RF prediction-basedmethod,
and Table 2 shows the performance of the XGBoost prediction-based
method. The arithmetic mean of the error rates of all possible com-
binations of data quality dimensions of the same size is recorded.
We have also calculated the Coefficient of Variation (CV) to measure
the relative dispersion of the error rates of each experiment. CV
is calculated as the ratio between the standard deviation (std) 𝜎
and the mean ` of the population: 𝐶𝑉 = 𝜎

` . Moreover, to provide
insights into the distribution of the DQ scores and to assess the
significance of the error rates compared to the statistics of the DQ
scores, we computed the summary statistics for the DQ score values
presented in Table 3 for the different experimental settings. These
statistics offer an overview of the DQ score ranges and their stan-
dard deviation, which allows us to contextualize the performance
of the ML models.

As for the predictive performance, for both ML algorithms, the
MAE value increases with the number of quality dimensions, as
the true scoring function becomes more difficult to capture by the
algorithms. The MAE metric’s average value is low in experiments
that are performed using a single data quality dimension. This is
because most of the data windows are of high quality, so their
quality score is close to 0. However, the 𝑅2 metric increases with
the size of the data quality dimensions for both RF and XGBosst as
the algorithms fit the data better. From the tables, we can also see
that the difference in performance is not significant between RF and
XGBoost, with the latter showing slightly lower MAE and higher
𝑅2 values. However, the significant run-time efficiency achieved by
the XGBoost model, as will be presented in the subsequent analysis,
makes it the most superior ML model to deploy in the DQSOps
framework.

Table 2: Average performance of the XGBoost prediction-
based method

DQD MAE R2

mean std CV mean std CV

1 0.0138 0.0036 0.2617 0.7820 0.1690 0.2161
2 0.4242 0.0619 0.1459 0.7231 0.2341 0.3237
3 0.5483 0.1044 0.1904 0.7846 0.1919 0.2445
4 0.5934 0.1075 0.1812 0.8582 0.0641 0.0746
5 0.6320 0.0000 0.0000 0.8916 0.0000 0.0000

Table 3: Statistics of data quality scores

DQD DQ score range DQ scores std

1 [0, 0.9345] 0.0896
2 [-15.173, 4.820] 2.27
3 [-13.819, 5.472] 2.355
4 [-12.204, 8.152] 2.93
5 [-9.899, 9.855] 2.846

4.3 Time Speedup Evaluation
To evaluate the run-time efficiency, we compare the time required
to execute the standard and prediction-based data quality scoring
approaches. Experiments were conducted with different numbers
of data quality dimensions to analyze the effect of the size of the
data quality dimensions on the execution time. For example, we
have five possible combinations in total for a single data quality
dimension. Each combination evaluates an individual data quality
dimension separately. While for two data quality dimensions, ten
pairs of data quality dimensions can be constructed from the five
overall quality dimensions defined in our framework, and so on.
Table 4 summarizes the average computation time of each method
per data window in seconds.

Analogously to the analysis presented in the previous section,
we analyzed the computational run-time of different sizes of data
quality dimensions. We calculated the summary statistics and Co-
efficient of Variation (CV) for the computational run-time of each
experiment to explore the dispersion of the results. We can observe
that the CV is higher for the standard-based scoring method. This is
because calculating completeness and consistency scores requires
less computational time than calculating the goodness-of-fit or
skewness. A simple fraction is required to calculate completeness
and consistency scores, while goodness-of-fit and skewness involve
estimating probability distributions. Hence, variability is higher
when conducting experiments with a single data quality dimension.
The CV values decrease as the number of data quality dimensions
increases, and the run-time variation of the different experiments
decreases. However, the standard deviation values are lower, and
the CV values are closer for prediction-based scoring methods than
for the standard-based approach. This signifies that the level of
dispersion around the mean is lower, and the execution times are
relatively closer for prediction-based methods.

For the standard-based method, the average computational time
is proportional to the number of quality dimensions. In contrast,

38

EASE ’23, June 14–16, 2023, Oulu, Finland Bayram F, et al.

Table 4: Time required to score a data window using the different approaches in seconds

DQD Standard-based RF prediction-based XGBoost prediction-based
mean std CV mean std CV Speedup mean std CV Speedup

1 0.19057 0.32218 1.69066 0.01953 0.00142 0.07260 9.76x 0.00050 0.00004 0.08774 381.90x
2 0.37671 0.39409 1.04614 0.01268 0.00035 0.02740 29.71x 0.00103 0.00007 0.06453 366.45x
3 0.57191 0.40000 0.69941 0.01259 0.00042 0.03334 45.44x 0.00109 0.00004 0.03334 523.72x
4 0.75229 0.32335 0.42983 0.01245 0.00030 0.02405 60.42x 0.00118 0.00004 0.03472 638.07x
5 0.94101 0.00000 0.00000 0.01265 0.00000 0.00000 74.38x 0.00115 0.00000 0.00000 818.98x

the average computational time does not depend on the number
of quality dimensions for prediction-based approaches. We can see
that the summary statistics are similar for each ML model used to
predict the data quality score in all experiments. This finding has
substantial practical implications on the sensitivity to the number
of quality dimensions for production environments. The run-time
for the prediction-based scoring process is agnostic to the number
of quality dimensions. In contrast, the run-time would increase with
the number of quality dimensions for the standard scoring process.
Regarding speedup rates, the results in Table 4 show significant
levels of run-time efficiency with the prediction-based quality scor-
ing approach. Specifically, the random forest (RF) prediction-based
method registers a 10x speedup increase over the standard-based
method for a single quality dimension. It reaches approximately
75x when using all the data quality dimensions. Similarly, for the
XGBoost prediction-based method, the speedup is approximately
382x when using one quality dimension to roughly reach 819x when
using all quality dimensions. However, comparing the different ML
models, we see that the XGBoost algorithm requires significantly
less run-time than RF. This is because RF relied on more complex en-
sembles of decision trees to make predictions than XGBoost during
the hyperparameter tuning phase.

4.4 Mutation Percentage Impact
As discussed in Section 3, data mutation methodology was carried
out to simulate issues that affect the quality of the processed data
window according to a specified percentage of mutations. Specifi-
cally, we utilized the whole set of data quality dimensions, which
are five in total, in this experiment. To analyze the impact of the
mutation percentage in the initialization phase, we have observed
the result of the test oracle by adjusting the percentage value using
a validation set. The test oracle was evaluated in terms of 𝑅2 and
MAE performance metrics for each ML algorithm. The results of
the RF and XGBoost algorithms are summarized in Figure 4.

For both algorithms, we can see that the evaluation metrics
demonstrate a U-shaped trend. Specifically, for 𝑅2 as displayed in
Figure 4a, the value begins at a rate slightly above 0.5 for both
algorithms when no data mutants are simulated, then improving to
reach approximately 0.9 using a data mutation percentage of 20%.
After reaching the peak, the performance metric starts to drop as we
increase the percentage of data mutants to reach approximately 0.68
and 0.58 for XGBoost and RF, respectively, at a mutation percentage
of 50%. Identically as shown in Figure 4b, the curve of the MAE
metric follows the same trend. Beginning with the highest error
levels with noise mutants introduced in the training data to achieve

optimal performance with MAE of 0.65 for XGBoost and 0.86 for
RF at 20% of the percentage of mutants. After that, inducing more
data mutants does not improve the training process and the error
steadily increases with higher mutation percentages.

The results of this experiment showed that the percentage of
induced mutants should be carefully chosen to obtain the value
that produces the optimal performance. In particular, a low muta-
tion percentage may not introduce enough data quality issues to
sufficiently train the ML model to correctly score the data quality.
However, setting the mutation percentage too high could introduce
many quality issues into the data, disrupting the learning process
and leading to poor performance. Therefore, choosing the muta-
tion percentage carefully to strike a balance between introducing
sufficient data quality issues and avoiding introducing too many
errors that could negatively impact the ML performance is critical
in the initialization phase.

5 THREATS TO EXTERNAL VALIDITY
External validity concerns generalizing the findings of the pro-
posed framework. Generalizability is the main threat in construct-
ing frameworks for real-world applications since every use case
may require a different approach to solve the problem. However,
the DQSOps framework shown in Figure 1 presents an abstract
pipeline workflow and was designed to be flexible without rigid
specifications on its components to promote reproducibility. There-
fore, it can be employed for scoring data of different natures in
diverse settings with simple adjustments to the methods used in
this research. For example, the scores of data quality dimensions
presented in Section 3.1 were designed to handle univariate time-
series data as our use case requires. However, other methods can
be followed to score the quality of multivariate data [40, 52] and
can be integrated into the DQSOps framework. Similarly, the rest
of the components can be determined to fit the system require-
ments of the handled use case. Additionally, the utilization of the
configuration files enhanced delivering a flexible framework. The
configuration files store auxiliary meta-information such as the pa-
rameters of data quality dimensions, and mutation percentage. This
meta-information can be configured based on the use case needs
without modifying the underlying structure of DQSOps. Based
on our analysis, we believe that using different techniques than
those employed in this research would still yield similar results and
findings to our study.

39

DQSOps: DataQuality Scoring Operations Framework for Data-Driven Applications EASE ’23, June 14–16, 2023, Oulu, Finland

(a) R2 (b) MAE

Figure 4: Mutants percentage impact on performance

6 CONCLUSION
In this paper, we have presented a Data Quality Scoring Operations
(DQSOps) framework. The framework can quantify the quality of
data records and distinguish high- and low-quality data. The frame-
work is integrated with two scoring approaches: a prediction-based
approach and a standard-based approach. The prediction-based
approach is used to predict the quality score of the collected data
windows using an ML model. In contrast, the standard-based ap-
proach is periodically invoked to produce the ground-truth quality
score. The score is found by combining several score metrics from
the defined data quality dimensions and is used to design a test
oracle. The test oracle continuously evaluates the ML model to
activate a retrain signal to update the ML model. Furthermore, a
data mutants simulator is integrated into DQSOps to induce quality
issues in the data and facilitate the learning process. The frame-
work is deployed and evaluated in a real-world industrial use case.
The results showed significant speedup rates achieved by DQSOps
compared to the standard scoring method while maintaining high
predictive performance. An analysis of the optimal mutation per-
centage was also presented to gain insight into its impact on the
learning process.

ACKNOWLEDGMENTS
This work has been funded by the Knowledge Foundation of Swe-
den (KKS) through the Synergy Project AIDA - A Holistic AI-
driven Networking and Processing Framework for Industrial IoT
(Rek:20200067).

REFERENCES
[1] Hervé Abdi and Lynne J Williams. 2010. Principal component analysis. Wiley

interdisciplinary reviews: computational statistics 2, 4 (2010), 433–459.
[2] Muhammad Aslam. 2021. A new goodness of fit test in the presence of uncertain

parameters. Complex & Intelligent Systems 7, 1 (2021), 359–365.
[3] Claudia Augste and Martin Lames. 2011. The relative age effect and success in

German elite U-17 soccer teams. Journal of sports sciences 29, 9 (2011), 983–987.
[4] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014.

The oracle problem in software testing: A survey. IEEE transactions on software
engineering 41, 5 (2014), 507–525.

[5] Carlo Batini, Anisa Rula, Monica Scannapieco, and Gianluigi Viscusi. 2015. From
data quality to big data quality. Journal of Database Management (JDM) 26, 1
(2015), 60–82.

[6] Roger Blake and Paul Mangiameli. 2011. The effects and interactions of data
quality and problem complexity on classification. Journal of Data and Information
Quality (JDIQ) 2, 2 (2011), 1–28.

[7] Jan Bosch, Helena Holmström Olsson, and Ivica Crnkovic. 2021. Engineering ai
systems: A research agenda. Artificial Intelligence Paradigms for Smart Cyber-
Physical Systems (2021), 1–19.

[8] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[9] John Byabazaire, Gregory O’Hare, and Declan T Delaney. 2022. End-to-End Data

Quality Assessment Using Trust for Data Shared IoT Deployments. IEEE Sensors
Journal (2022).

[10] Cinzia Cappiello, C Cerletti, C Fratto, and Barbara Pernici. 2018. Validating data
quality actions in scoring processes. Journal of Data and Information Quality
(JDIQ) 9, 2 (2018), 1–27.

[11] Emily Caveness, Paul Suganthan GC, Zhuo Peng, Neoklis Polyzotis, Sudip Roy,
and Martin Zinkevich. 2020. Tensorflow data validation: Data analysis and
validation in continuous ml pipelines. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 2793–2796.

[12] Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep learning for anomaly
detection: A survey. arXiv preprint arXiv:1901.03407 (2019).

[13] Abraham Chan, Arpan Gujarati, Karthik Pattabiraman, and Sathish Gopalakrish-
nan. 2022. The Fault in Our Data Stars: Studying Mitigation Techniques against
Faulty Training Data in Machine Learning Applications. In 2022 52nd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 163–171.

[14] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[15] Sezal Chug, Priya Kaushal, Ponnurangam Kumaraguru, and Tavpritesh Sethi.
2021. Statistical Learning to Operationalize a Domain Agnostic Data Quality
Scoring. arXiv preprint arXiv:2108.08905 (2021).

[16] Corinna Cichy and Stefan Rass. 2019. An overview of data quality frameworks.
IEEE Access 7 (2019), 24634–24648.

[17] RalphB D’Agostino. 2017. Goodness-of-fit-techniques. Routledge.
[18] Koen Decancq and Maria Ana Lugo. 2012. Inequality of wellbeing: A multidi-

mensional approach. Economica 79, 316 (2012), 721–746.
[19] Adenekan Dedeke. 2000. A Conceptual Framework for Developing Quality

Measures for Information Systems.. In IQ. 126–128.
[20] Lisa Ehrlinger andWolframWöß. 2018. A novel data qualitymetric for minimality.

In International Workshop on Data Quality and Trust in Big Data. Springer, 1–15.
[21] Diane L Evans, John H Drew, and Lawrence M Leemis. 2008. The distribution of

the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling test statis-
tics for exponential populations with estimated parameters. Communications in
Statistics—Simulation and Computation® 37, 7 (2008), 1396–1421.

[22] Wenfei Fan. 2015. Data quality: From theory to practice. Acm Sigmod Record 44,
3 (2015), 7–18.

[23] Harald Foidl and Michael Felderer. 2019. Risk-based data validation in machine
learning-based software systems. In proceedings of the 3rd ACM SIGSOFT interna-
tional workshop on machine learning techniques for software quality evaluation.
13–18.

[24] Bernd Heinrich, Diana Hristova, Mathias Klier, Alexander Schiller, and Michael
Szubartowicz. 2018. Requirements for data quality metrics. Journal of Data and
Information Quality (JDIQ) 9, 2 (2018), 1–32.

[25] BerndHeinrich, Mathias Klier, Alexander Schiller, and GeritWagner. 2018. Assess-
ing data quality–A probability-based metric for semantic consistency. Decision
Support Systems 110 (2018), 95–106.

[26] Abhinav Jain, Hima Patel, Lokesh Nagalapatti, Nitin Gupta, Sameep Mehta,
Shanmukha Guttula, Shashank Mujumdar, Shazia Afzal, Ruhi Sharma Mittal, and
Vitobha Munigala. 2020. Overview and importance of data quality for machine
learning tasks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 3561–3562.

[27] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.

[28] Meenu Mary John, Helena Holmström Olsson, and Jan Bosch. 2021. Towards
mlops: A framework and maturity model. In 2021 47th Euromicro Conference on

40

EASE ’23, June 14–16, 2023, Oulu, Finland Bayram F, et al.

Software Engineering and Advanced Applications (SEAA). IEEE, 1–8.
[29] Steven G Johnson, Stuart Speedie, Gyorgy Simon, Vipin Kumar, and Bonnie L

Westra. 2016. Application of an ontology for characterizing data quality for a
secondary use of EHR data. Applied clinical informatics 7, 01 (2016), 69–88.

[30] Sonia Kahiomba Kiangala and Zenghui Wang. 2021. An effective adaptive cus-
tomization framework for small manufacturing plants using extreme gradient
boosting-XGBoost and random forest ensemble learning algorithms in an Indus-
try 4.0 environment. Machine Learning with Applications 4 (2021), 100024.

[31] Shirlee-ann Knight. 2011. The combined conceptual life-cycle model of infor-
mation quality: part 1, an investigative framework. International journal of
information quality 2, 3 (2011), 205–230.

[32] Paul Kvam, Brani Vidakovic, and Seong-joon Kim. 2022. Nonparametric Statistics
with Applications to Science and Engineering with R. John Wiley & Sons.

[33] Erin LeDell and Sebastien Poirier. 2020. H2o automl: Scalable automatic machine
learning. In Proceedings of the AutoML Workshop at ICML, Vol. 2020.

[34] Lillian Lee. 2000. Measures of distributional similarity. arXiv preprint cs/0001012
(2000).

[35] Nan Li and Jeff Offutt. 2016. Test oracle strategies for model-based testing. IEEE
Transactions on Software Engineering 43, 4 (2016), 372–395.

[36] Jianhua Lin. 1991. Divergence measures based on the Shannon entropy. IEEE
Transactions on Information theory 37, 1 (1991), 145–151.

[37] Antonios Lionis, Konstantinos P Peppas, Hector E Nistazakis, and Andreas
Tsigopoulos. 2021. RSSI Probability Density Functions Comparison Using Jensen-
Shannon Divergence and Pearson Distribution. Technologies 9, 2 (2021), 26.

[38] David Loshin. 2010. The practitioner’s guide to data quality improvement. Elsevier.
[39] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. 2018.

Learning under concept drift: A review. IEEE Transactions on Knowledge and
Data Engineering 31, 12 (2018), 2346–2363.

[40] Harald Martens and Magni Martens. 2001. Multivariate analysis of quality: an
introduction. John Wiley & Sons.

[41] Xiaofeng Meng and Xiang Ci. 2013. Big data management: concepts, techniques
and challenges. Journal of computer research and development 50, 1 (2013), 146–
169.

[42] Helen-Tadesse Moges, Karel Dejaeger, Wilfried Lemahieu, and Bart Baesens. 2013.
A multidimensional analysis of data quality for credit risk management: New
insights and challenges. Information & Management 50, 1 (2013), 43–58.

[43] Michael Muller, Ingrid Lange, DakuoWang, David Piorkowski, Jason Tsay, Q Vera
Liao, Casey Dugan, and Thomas Erickson. 2019. How data science workers work

with data: Discovery, capture, curation, design, creation. In Proceedings of the
2019 CHI conference on human factors in computing systems. 1–15.

[44] Hoang-Vu Nguyen and Jilles Vreeken. 2015. Non-parametric jensen-shannon
divergence. In Joint European conference on machine learning and knowledge
discovery in databases. Springer, 173–189.

[45] Jack E Olson. 2003. Data quality: the accuracy dimension. Elsevier.
[46] Liu Peng and Lei Lei. 2005. A review of missing data treatment methods. Intell.

Inf. Manag. Syst. Technol 1 (2005), 412–419.
[47] Leo L Pipino, Yang W Lee, and Richard Y Wang. 2002. Data quality assessment.

Commun. ACM 45, 4 (2002), 211–218.
[48] John Winsor Pratt and Jean Dickinson Gibbons. 2012. Concepts of nonparametric

theory. Springer Science & Business Media.
[49] Laura Rettig, Mourad Khayati, Philippe Cudré-Mauroux, and Michał Piórkowski.

2019. Online anomaly detection over big data streams. In Applied data science.
Springer, 289–312.

[50] David Schuler and Andreas Zeller. 2013. Covering and uncovering equivalent
mutants. Software Testing, Verification and Reliability 23, 5 (2013), 353–374.

[51] Kelly M Sunderland, Derek Beaton, Julia Fraser, Donna Kwan, Paula M
McLaughlin, Manuel Montero-Odasso, Alicia J Peltsch, Frederico Pieruccini-Faria,
Demetrios J Sahlas, Richard H Swartz, et al. 2019. The utility of multivariate
outlier detection techniques for data quality evaluation in large studies: an appli-
cation within the ONDRI project. BMC medical research methodology 19, 1 (2019),
1–16.

[52] Ikbal Taleb, Mohamed Adel Serhani, Chafik Bouhaddioui, and Rachida Dssouli.
2021. Big data quality framework: a holistic approach to continuous quality
management. Journal of Big Data 8, 1 (2021), 1–41.

[53] Hui Yie Teh, Andreas W Kempa-Liehr, and Kevin I-Kai Wang. 2020. Sensor data
quality: A systematic review. Journal of Big Data 7, 1 (2020), 1–49.

[54] Reza Vaziri, MehranMohsenzadeh, and Jafar Habibi. 2019. Measuring data quality
with weighted metrics. Total Quality Management & Business Excellence 30, 5-6
(2019), 708–720.

[55] Yair Wand and Richard Y Wang. 1996. Anchoring data quality dimensions in
ontological foundations. Commun. ACM 39, 11 (1996), 86–95.

[56] Richard Y Wang, Veda C Storey, and Christopher P Firth. 1995. A framework
for analysis of data quality research. IEEE transactions on knowledge and data
engineering 7, 4 (1995), 623–640.

41

	Abstract
	1 Introduction
	2 Background and Previous Work
	2.1 Data Quality Dimensions
	2.2 Related Work

	3 Data Quality Scoring Operations (DQSOps) Framework
	3.1 Scoring the Data Quality Dimensions
	3.2 Finding the Consolidated Data Quality Score
	3.3 Initialization Phase
	3.4 Method Activator Component

	4 Implementation and Evaluation
	4.1 Industrial Use Case Description
	4.2 Predictive Performance Evaluation
	4.3 Time Speedup Evaluation
	4.4 Mutation Percentage Impact

	5 Threats to External Validity
	6 Conclusion
	Acknowledgments
	References

