
Faculty of Health, Science and Technology
Master thesis in Computer Science
Second Cycle, 30 hp (ECTS)
Supervisor: Assoc. Prof. Sebastian Herold, University of Karlstad, Karlstad, SWE
Examiner: Prof. Bestoun S. Ahmed, University of Karlstad, Karlstad, SWE
Karlstad, June 13th, 2023

Using Synthetic Data to Model
Mobile User Interface
Interactions

Laoa Jalal

Abstract

Usability testing within User Interface (UI) is a central part of assuring high-quality UI
design that provides good user-experiences across multiple user-groups. The process
of usability testing often times requires extensive collection of user feedback, preferably
across multiple user groups, to ensure an unbiased observation of the potential design
flaws within the UI design. Attaining feedback from certain user groups has shown to
be challenging, due to factors such as medical conditions that limits the possibilities of
users to participate in the usability test. An absence of these hard-to-access groups can
lead to designs that fails to consider their unique needs and preferences, which may
potentially result in a worse user experience for these individuals. In this thesis, we
try to address the current gaps within data collection of usability tests by investigating
whether theGenerative AdversarialNetwork (GAN) framework can be used to generate
high-quality synthetic user interactions of a particular UI gesture across multiple user
groups. Moreover, a collection UI interaction of 2 user groups, namely the elderly
and young population, was conducted where the UI interaction at focus was the
drag-and-drop operation. The datasets, comprising of both user groups were trained
on separate GANs, both using the doppelGANger architecture, and the generated
synthetic datawere evaluated based on its diversity, howwell temporal correlations are
preserved and its performance compared to the real data when used in a classification
task. The experiment result shows that both GANs produces high-quality synthetic
resemblances of the drag-and-drop operation, where the synthetic samples show both
diversity and uniqueness when compared to the actual dataset. The synthetic dataset
across both user groups also provides similar statistical properties within the original
dataset, such as the per-sample length distribution and the temporal correlations
within the sequences. Furthermore, the synthetic dataset shows, on average, similar
performance achievements across precision, recall and F1 scores compared to the
actual dataset when used to train a classifier to distinguish between the elderly and
younger population drag-and-drop sequences. Further research regarding the use of
multiple UI gestures, using a single GAN to generate UI interactions across multiple
user groups, and performing a comparative study of different GAN architectures would
provide valuable insights of unexplored potentials and possible limitations within this
particular problem domain.

iii

Keywords
Time Series Data, Generative Adversarial Networks, Synthetic Data Generator,
Usability Testing, Machine Learning

iv

Sammanfattning

Användbarhetstester inomAnvändargränssnitt (UI) är en central del för att säkerställa
högkvalitativ UI-design som ger bra användarupplevelser över flera användargrupper.
Processen med
användbarhetstester kräver ofta omfattande insamling av användarfeedback, helst
över flera användargrupper, för att säkerställa en opartisk observation av de potentiella
designbristerna inom UI-designen. Att få feedback från vissa användargrupper
har visat sig vara utmanande, på grund av faktorer som medicinska tillstånd som
begränsar användarnas möjligheter att delta i användbarhetstestet. En frånvaro av
dessa svåråtkomliga grupper kan leda till design som inte tar hänsyn till deras unika
behov och preferenser, vilket potentiellt kan resultera i en sämre användarupplevelse
för dessa individer. I den här avhandlingen försöker vi ta itu med de nuvarande brister
inom datainsamling av användbarhetstester genom att undersöka omGAN-ramverket
kan användas för att generera syntetiska användarinteraktioner av hög kvalitet av
en viss UI-gest över flera användar grupper. Dessutom genomfördes en samling UI-
interaktion av 2 användargrupper, nämligen den äldre och den unga befolkningen,
där UI-interaktionen i fokus var dra-och-släpp-operationen. Datauppsättningarna,
bestående av båda användargrupperna, tränades på separata GAN, båda med hjälp
av doppelGANger-arkitekturen, och den genererade syntetiska data utvärderades
baserat på dess mångfald, hur väl tidsmässiga korrelationer bevaras och dess
prestanda jämfört med den verkliga data när de används i en klassificeringsuppgift.
Experimentresultatet visar att båda GAN producerar högkvalitativa syntetiska likheter
med dra-och-släpp-operationen, där de syntetiska proverna visar både mångfald
och unikhet jämfört med den faktiska datamängden. Den syntetiska datamängden
över båda användargrupperna ger också liknande statistiska egenskaper inom den
ursprungliga datamängden, såsom längdfördelningen per prov och de tidsmässiga
korrelationerna inom sekvenserna. Dessutom visar den syntetiska datamängden i
genomsnitt liknande prestandaprestationer över precision, återkallelse och F1-poäng
jämfört med den faktiska datamängden när den används för att träna en klassificerare
för att skilja mellan dra-och-släpp-sekvenser för äldre och yngre. Ytterligare forskning
angående användningen av flera UI-gester, att använda en enda GAN för att generera
UI-interaktioner över flera användargrupper och att utföra en jämförande studie av
olika GAN-arkitekturer skulle ge värdefulla insikter om outforskade potentialer och
möjliga begränsningar inom just denna problemdomän.

v

Nyckelord
Tidsseriedata, Generativa Motstridande Nätverk, Syntetisk datagenerator,
Användbarhetstestning, Maskininlärning

vi

Acknowledgements

First, I would like to express my gratitude to my supervisor, Sebastian Herold, for
granting me valuable guidance, both in the writing process, as well as in the research
as whole. Furthermore, I would also want to thank Bilal Maqbool for helping me with
the collection of user data. Last but not least, I want to give a special thanks to both
my sisters for their endless support in not only my academic journey, but also through
the though times in life.

vii

Acronyms

SDG Synthetic Data Generator
GAN Generative Adversarial Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
UI User Interface
CSV Comma-separated Values
MSE Mean Squared Error
BCE Binary Cross-Entropy
GDPR General Data Protection Regulation
UUID Universally Unique IDentifier

viii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 1
1.3 Thesis Objective . 2
1.4 Goals . 2
1.5 Ethics and Sustainability . 2
1.6 Methodology . 3
1.7 Delimitations . 3
1.8 Outline . 3

2 Background and Related Work 5
2.1 UI Interactions . 5
2.2 Neural Networks . 6

2.2.1 Recurrent Neural Networks . 9
2.3 Generative models . 11
2.4 Generative Adversarial Networks . 12

2.4.1 Wasserstein Distance . 13
2.5 Related Work . 14

3 Experimental Design 17
3.1 Research Question . 17
3.2 Experimental Overview . 17
3.3 Data Collection . 18

3.3.1 User Task . 19
3.3.2 Collected Data . 20

3.4 Synthetic Data Generation . 22
3.4.1 Pre-processing . 22
3.4.2 GAN Architecture . 24
3.4.3 GAN Training . 26
3.4.4 Post-Processing . 26

3.5 Evaluating the Synthetic Data . 27
3.5.1 RQ1 . 28
3.5.2 RQ2 . 29

ix

CONTENTS

4 Implementation 31
4.1 Overview of Implementation . 31
4.2 Data Collection . 31

4.2.1 Mobile Application . 31
4.2.2 Data Storage . 33

4.3 Synthetic Data Generation . 35
4.3.1 Dataset . 35
4.3.2 Pre-Processing . 35
4.3.3 GAN Model . 36
4.3.4 Post-Processing . 37
4.3.5 Evaluating the Synthetic Data 37

4.4 Code Repository . 41

5 Result and Discussion 42
5.1 Data Collection . 42
5.2 GAN Parameters . 44
5.3 RQ1: Fidelity of the Synthetic Data . 44
5.4 RQ2: Performance Evaluation . 48
5.5 Discussion . 49

5.5.1 Fidelity of the Synthetic Data . 49
5.5.2 Performance of the Synthetic Data 50
5.5.3 Threats to Validity . 51
5.5.4 Limitations . 52

6 Conclusions and Future Work 54
6.1 Future Work . 55

References 56

x

Chapter 1

Introduction

1.1 Background
Today’s society heavily depends on complex software systems to operate as intended.
Many of these software systems are deployed on mobile devices, often providing a
UI that enables the end user to interact with the underlining system. The number
of smartphone users has rapidly increased in the past decade, where the worldwide
estimate of 2023 amounts to 5.2 billion users, almost a 370% increase compared to
2013 [10]. The number of smartphone users is expected to increase further, which
opens new challenges for developers to provide high-quality services and adapt the
service design for a wide range of user groups. Designing a user-friendly UI for
smartphone devices is often consideredmore challenging than for desktop UIs, mainly
because of the limited screen sizes and the unique set of UI gestures present for
a smartphone[4]. This has led to various design guidelines provided by different
platforms to help developers design a UI that offers a high-quality user experience
[29] [17]. Even if the UI follows various design guidelines, testing the design on real
users is often required for assurance regarding the user experience. These types of
tests are referred to as usability testing and aims to detect possible design flaws within
the current design by collecting user feedback of users that performs a set of specified
tasks within the UI[42]. This process often requires multiple participants, preferably a
wide range of user groups, to provide an unbiased observation of the potential design
flaws. Usability testing of various kinds has been a widely studied topic, where some
analyze the effect of different UI gestures across multiple user groups [23] [38], while
others provide a general methodology for efficient usability testing [31].

1.2 Problem Statement
Usability testing is a crucial aspect of UI design, aiming to ensure satisfactory user
experiences across diverse user groups. However, gathering usability data from certain
groups presents significant challenges due to factors such asmedical conditions, which

1

CHAPTER 1. INTRODUCTION

can create both practical and ethical problems during the data collection process. The
inability to effectively include these hard-to-access groups in usability testing can
lead to designs that fail to consider their unique needs and preferences, potentially
resulting in worse user experiences for these individuals. There are, however, limited
studies regarding the augmentation of existing data gathered from usability testing.
Augmentation of the limited data helps minimize the potential bias across various user
groups when performing the usability testing, ultimately assisting the developers in
designing a user-friendly UI adapted for all user types.

1.3 Thesis Objective
The aim of this project is to investigate whether a Synthetic Data Generator (SDG)
can be used to generate high-quality user interaction data of a certain UI gesture from
various user groups. This will be done by first capturing user interactions of various
user groups and use the collected data to train a SDG using the GAN framework. The
resulting SDGwill be evaluated according to its diversity in generated UI gestures, how
well the data resembles actual user interactions and its performance compared to the
real data when used in a classification problem.

1.4 Goals
The thesis aims to combine the gaps between the use of GANs in the domain of usability
testing, where the focus is on user interactions within the UI. More specifically, we will
focus on a specific UI gesture, namely the drag and drop operation which is commonly
used in many applications. The goal is to provide valuable insight, possibilities, and
limitations of using GANs to augment the drag and drop operation of various user
groups. The project is designed to be a stepping stone in motivating further research
within this area of study to explore more complex settings where multiple UI gestures
may be explored. Furthermore, the following research questionswill be used to achieve
the goals of the study:

• RQ1: How well does synthetic data resemble UI interaction data for different
user groups?

• RQ2: How well does the synthetic UI interaction perform compared to real user
interaction data?

1.5 Ethics and Sustainability
AI solutions have been greatly beneficial within many domains where prior solutions
could be more efficient, impractical, or both. Many AI solutions, such as GANs,
do, however, pose issues regarding bias and discrimination. An AI system trained
on biased data can pose threats regarding its perception of right and wrong, which

2

CHAPTER 1. INTRODUCTION

might pose disadvantages for certain demographic groups[19]. In our problem setting,
the resulting synthetic data produced by our generators may not correctly represent
the user group’s actual behavior when interacting with the UI, which may create
a false perception of how the user groups actually behave. The problem can be
relatively serious if one mindlessly uses synthetic data without evaluating its quality.
As mentioned earlier, one can limit the consequence of the problem by performing a
statistical assessment of the synthetic data and comparing it against the actual data
before using the synthetic data in a real problem setting. In conjunction, the thesis
also requires user data for training the GANs. User data collection must comply
with the General Data Protection Regulation (GDPR), which may otherwise lead to
infringement [8]. All user data is stored anonymously to mitigate the possibility of
breaking any rules within GDPR.

1.6 Methodology
The thesis is divided into two parts, the data collection phase and the experimental
stage. The data is collected by implementing a prototype mobile application that
captures the UI interaction alongside certain demographic information and stores it
persistently. The collection of data is done by approaching possible participants that
are willing to perform the experiment. After completing the data collection, the data is
separated based on the user groups and pre-processed before training the GANmodel.
After training, the GAN is first visually evaluated based on its outputs, and depending
on the visual assessment, we either change parameters within our GAN or use the GAN
for a formal evaluation. The formal evaluation looks at statistical similarities between
the real and synthetic user interaction and the difference in performance when used to
train a classification model.

1.7 Delimitations
The thesis focuses primarily on a single type of UI interaction, the drag-and-drop
operation, which is one of many UI gestures commonly used within a smartphone.
Including a broader set of UI gestures will provide more insight into the strengths and
weaknesses of our current approach and also generalize the proposed solution. The
study focuses mainly on a single GAN architecture which may not provide the best
solution for our problem settings.

1.8 Outline
The thesis contains the following chapters: Chapter 2 presents the necessary theory
that is needed to understand the upcoming chapters. Alongside the theory, we also
provide a section of related work that present similar studies to our research. Chapter
3 contains the various design decisions which are aimed to answer the research

3

CHAPTER 1. INTRODUCTION

questions. Chapter 4 provides the practical implementation of the design decisions
made from previous chapter. Chapter 5 presents the results of our study together with
an discussion regarding the gathered results. Lastly, a conclusion is drawn in chapter
6 to sum up the thesis.

4

Chapter 2

Background and Related Work

This chapter provides both taxonomy and theory of various topics which are necessary
to understand before reading upcoming chapters. We start with a walkthrough of the
common UI gestures within a smartphone, alongside a brief explanation of UI testing.
Then, a comprehensive introduction to neural network, alongside recurrent neural
network is discussed which is later followed by the GAN framework and its theory.
Lastly, we discuss related studies with the focus on usability testing and GANs adapted
for time series data.

2.1 UI Interactions
Modern-day smartphones often provide a touchscreen for the users to interact with
the various application within the phone. Touchscreen devices provide a diverse set of
gestures to ease the process of various actions within the smartphone. The simplest
gestures, often referred to as Single-Touch Gestures, involve actions using a single
touch point [40]. These types of gestures involve actions such as tapping a button,
displacement of elements using dragging, and swiping to scroll the UI, to name a few.
Another set of gestures calledMulti-Touch Gestures, requires the user to use multiple
touch points to perform the desired operation [40]. An example of a common Multi-
Touch Gesture is the pinch operation, commonly used to resize elements within the UI,
such as pictures. Additionally, some smartphones include built-in sensor devices that
analyze the phone’s external surroundings, often referred to as Sensor-based Gestures
[34]. A commonly used sensor device is the accelerometer which reports a quantitative
acceleration value along the device’s three axes [28].

How various user groups interact with the UI can vary based on factors such as
age, physical abilities, and cultural background. For instance, people with visual
impairment require special assistive technologies where the user receives spoken
feedback when interacting with various UI components within the smartphone [26].
Alongside the physical limitations, younger users generally tend to navigate through
UIs faster than the elderly population, where the elderly often navigates the UI slower

5

CHAPTER 2. BACKGROUND AND RELATEDWORK

and requires more explicit descriptions to navigate across the interface [32, 38].
Cultural background is also essential to consider, as some cultures interpret various
interactions differently, e.g., different interpretations of symbols and color symbolism,
which may affect how the users interact with the UI.

All the factors mentioned above must be considered when designing a UI to maximize
the product’s desired functionality and provide a high level of user experience. To
ensure the UI is satisfactory, we often must perform various UI tests for complete
quality assurance. UI testing contains multiple tasks, each with its purpose and goal of
achieving high-quality design. These tasks range from simple design testing, where we
often follow a set of guidelines to ensure consistency in layouts, colors, and font sizes, to
name a few [29] [17]. Another important aspect of UI testing, referred to as interaction
testing, ensures that the user can interact with the UI in the way it is intended for [21].
Lastly, to ensure that the UI design is satisfactory, we provide the UI for actual users to
operate on various tasks, ultimately providing feedback on the various usability aspects
to ensure whether the UI is user-friendly or not.

This thesis focuses primarily on the usability testing part of UI testing, where the main
task is the drag-and-drop gesture, which requires the user to displace an element to a
designated location.

2.2 Neural Networks

Neural networks, or Artificial neural networks (ANN), are a sub-domain of machine
learning that has gained much attention in the past decades due to their promising
results in various domains, such as speech recognition and natural language
processing, to name a few [24]. Using a mathematical model, neural networks were
designed to mimic the biological neurons inside the animal brain. Each artificial
neuron consists of inputs that are processed inside the neuron to produce a single
output. The output can be sent to multiple neurons, which take the previous neuron’s
output as its input. When multiple neurons are connected in sequence, with each
output connecting to another neuron’s input, we say that the network consists of
multiple layers. The general goal of using a neural network is to approximate some
function g(x;θ), where an input x, parameterized by θ, is used to map some output y.
Thesemodels are often referred to as feedforward networks as the input x is processed
sequentially from each layer until reaching the final output layer [12].

Figure 2.2.1 demonstrates a feedforward neural network with three layers, the
mandatory input and output layers and a single hidden layer. When observing the
figure, we see that each feature from the input layer is connected to each of the units
inside the hidden layer. The edges connecting eachneuron carry an implicit weight that
determines the magnitude of each input. More formally, the neurons can be described

6

CHAPTER 2. BACKGROUND AND RELATEDWORK

Figure 2.2.1: Neural network with an input layer consisting of 3 features, a single
hidden layer with 3 units and a single unit in the output layer

Figure 2.2.2: Single Neuron with n inputs which produce the output value using the
activation function

with the following expression,

gkl = h(
n∑

i=1

wk−1
li xi + bk−1

l) (2.1)

To decode the expression in 2.1, we start by looking at the inner term containing the
sum. The term wk−1

li xi says that each in-bounding edge, which we refer to as weights
wk−1

li , are multiplied with the actual input value, xi, where i refers to the connected
edges, l the current activation unit and k the current layer. The term bk−1

l is the bias
we use to shift the function, similar to how the constant in a linear equation shifts the
function in the y-axis. Figure 2.2.2 depicts an illustration of 2.1.

Summing all terms leaves a scalar value inside the activation function h. The activation
function used inside the neuron is almost always non-linear. The non-linearity
enables the neuron network to generalize to a broader family of functions, enabling

7

CHAPTER 2. BACKGROUND AND RELATEDWORK

more sophisticated models that can learn more complex patterns in contrast to using
exclusively linear functions [24].

There are many available activation functions, each with its benefits and limitations. A
commonly used activation function is the rectified linear unit ReLU, which uses the
activation function h(z) = max{0, z}, where z is the linear summation of the input to
the neuron. The ReLU function is similar to the linear function, except that negative
values are crunched to 0. Despite ReLU’s simplicity, it has shown great results inmany
architectures and is often used as the standard activation unit inside many hidden
layers [1]. Other popular activation functions are the sigmoid function,

h(z) =
1

1 + e−z
(2.2)

and the hyperbolic tangent, tanh.

h(z) = tanh(z) =
ez − e−z

ez + e−z
(2.3)

Both these activation functions are not preferred in a feed-forward model as the
function saturates between (0,1) for the sigmoid and (-1, 1) for tanhwhen the input z is
too large or too small. Note that the z value is a linear summation of the input values
multiplied by the input weights. The problem with saturating activation functions is
the vanishing gradient problem which occurs when the derivative approaches 0. A
gradient close to zero negatively affects the back-propagation algorithm, which uses
gradient descent to update each parameter inside the neural network to minimize the
loss value. Despite the drawbacks of using sigmoid and tanh as activation functions
inside the hidden layers for a feed-forward network, they are still useful in other
settings, such as in Recurrent Neural Network (RNN).

After the input x reaches the output layer, we say the network hasmade a single forward
propagation. To train the model, the output produced by the neural network has to
be compared with some reference value yreal to properly adjust each weight inside
the neural network. The calculated difference between the reference point and the
model output is often called the loss value. There are several ways to calculate the
loss value of a models prediction. One common loss function is the Mean Squared
Error (MSE),

MSE =
1

N

∑
(yreal − ymodel)

2 (2.4)

which takes the average sum of the squared distance between the real answer and the
answer produced by the model. The MSE loss is commonly used when the model
is trained on regression problems where the value ranges in y ∈ Rn, where n is
the number of output nodes in the network [18]. Another common loss function is
the cross-entropy loss which is commonly used in problems where the output is of

8

CHAPTER 2. BACKGROUND AND RELATEDWORK

categorical nature [18]. For instance, we might have a dataset X containing images of
cats and dogs with a corresponding target space y ∈ [cat, dog]. In the case of classifying
cats fromdogs, we say that the problem is of binary naturewhere the output only ranges
between 2 values. The loss function for the binary cross-entropy is defined as

BCE = − 1

N

∑
(ytarget ∗ log(ypred) + (1− ytarget) ∗ log(1− ypred)) (2.5)

where ytarget is the actual label to the input, and ypred is themodels prediction, given the
input. The logic behind cross-entropy is that, when ytarget is 1 and the model predicts
a value close to 0, the term log(ypred) → ∞, meaning that the loss is large when the
model makes bad predictions. On the contrary, if the value predicted by the model is
close to ytarget, the loss is close to 0.

2.2.1 Recurrent Neural Networks

Recurrent Neural Networks, also called RNNs, are neural networks specializing in
processing sequential data [12, 35]. The motivation behind RNNs was that the
traditional feed-forward neural network, discussed in the previous section, was not
designed to handle inputs with temporal correlation, such as text or time-series
sequences where the input feature xi depends on the previous feature xi−1. RNNs use
recurrent states, often denoted as h, as additional input alongside the input x. More
formally, the state at point t can be written with the following recursive equation,

ht = g(W ∗ ht−1, V ∗ xt; θ) (2.6)

where ht is the current state, based on the output of the activation function with
input data xt multiplied with the weight matrix V, alongside the previous state ht−1

multiplied by the weight matrix W. Figure 2.2.3 shows an example RNN with the
many-to-many setting, meaning that each input maps to a corresponding output.
Also, note that each layer shares the same weight matrices A,B, and W, meaning
that each timestep contributes to adjusting the global weight when optimizing the
network. RNNs are inherently sequential, where each hidden state ht depends on
the computation of the previous hidden state ht−1. This makes it inherently hard to
utilize parallel computing, making RNNs very slow compared to other architectures
[35].

Alongside being slow to train, RNNs are also very hard to train. When applying
the backpropagation algorithm to an RNN, we often say we backpropagate through
time. Because each hidden state ht depends on the previous states h1..ht−1, we have
to consider the loss gradients with respect to each prior state. To calculate the loss of
state T with respect to the weight matrixW, we can use the following equation,

9

CHAPTER 2. BACKGROUND AND RELATEDWORK

∂LT

∂W
=

T∑
i=1

∂LT

∂yT

∂yT
∂hi

∂hi

∂W
(2.7)

When observing 2.7, the gradient calculation accumulates rapidly to either zero or
infinity when the RNN contains long sequences because of the repeatingmultiplication
of the gradients. One proposed solution for handling the vanishing gradient problem
is to use Long Short-Term Memory (LSTM) [35]. LSTM is an modified RNN cell
that utilize additional gates to reduce the risk of vanishing gradients during the
backpropagation.

Figure 2.2.3: A unfolded RNNwhere each input maps to a corresponding output. This
is often referred to as a many-to-many architecture

Long Short-Term Memory

The LSTM unit, first proposed in [16], was designed to address the problems within
the vanilla RNN unit, where long-term dependencies often led to vanishing gradient
problems when training the RNN. The LSTM unit introduces a new input channel
called the cell state ct at each hidden unit; see figure 2.2.4. The cell uses three unique
gates to control the information traversing the cell state: the input, output and forget
gates. As with the normal RNN cell, we can describe the LSTM cell mathematically
using the following set of equations,

ft = σ(Wf [ht−1, xt] + bf) (2.8)

it = σ(Wi[ht−1, xt] + bi) (2.9)

C̃t = tanh(Wc[ht−1, xt] + bc) (2.10)

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.11)

ot = σ(Wo[ht−1, xt] + bo) (2.12)

ht = ot ∗ tanh(Ct) (2.13)

10

CHAPTER 2. BACKGROUND AND RELATEDWORK

The equation 2.8 is the forget gatewhich uses sigmoid activation to crunch the previous
state ht−1 and current input xt to a value between 0 and 1. If the gate outputs 0, we
forget the previous cell state Ct−1 because Ct−1 ∗ 0 = 0. On the contrary, if the gate
outputs 1, all information in Ct−1 is used in the current cell state. Values between 0
and 1 scale the previous cell state according to the relevance of the current state. To
store and update new information to the current cell state Ct, we use the equations 2.9,
2.10 and 2.11. The equation 2.9 determines which values to update from the input,
while 2.10 generates values that determine the magnitude each value should either
increase or decrease with. To update the current cell, the values produced by it and
C̃t are multiplied and added with the previous cell state, and scaled with ft. The final
operation happens in the output gate, where the hidden state ht is calculated by first
determining the magnitude of the output, which is multiplied by tanh(Ct).

Figure 2.2.4: Diagram over LSTM cell

2.3 Generative models
In machine learning, two distinct classes are used to solve a set of problems, namely
the discriminative and generativemodels. Discriminativemodels are used in problems
where we try to find the probability of an outcome y, given the input x, which can
be formulated using the conditional probability p(y|x). This class of models are often
used in settings where we have labeled data and wish to learn the underlying pattern
of a dataset to distinguish between different targets. One example is training a model
to distinguish between cats and dogs, where the input x may be an image containing
either a cat or dog, whichwemarkwith a label y. Whenwewant to learn the underlying
probability distribution of a given dataset X, given some conditional description Y

we need generative models that tries to learn the conditional probability of p(X|Y).
To connect the example with the cats and dogs, we may train a generative model to
generate cat and dog images, X, given an arbitrary input description Y . Generative
models are often both harder and slower to train than the discriminativemodels. While
the discriminative models learns to only draw a decision boundary for its given data

11

CHAPTER 2. BACKGROUND AND RELATEDWORK

space, generative models has to learn the underlying distribution of the given dataset
[15]. Various generative classes of models exist, each with its benefit and limitation. In
this thesis, GANs are used as the method for training a model to learn the underlying
distribution of a given dataset.

2.4 Generative Adversarial Networks
GANs is a framework, first proposed by [13], for training a generative model by
introducing two separate models, the generator G and the discriminator D. GANs
use the principle of game theory where the two models, D and G, compete in a zero-
sum game, meaning that one actor’s gain results in the other actor’s loss. Figure 2.4.1
shows a generic GAN network’s architectural components and information flow. The
generatorG takes a randomnoise vector z from an explicitly defined distribution, often
in the form of a Gaussian or uniform distribution, as input and produces the output
G(z). The discriminator D is trained to classify whether the incoming data is real or
fake. Real data refers to the actual sample domain, that is, the dataset xreal while fake
data is generated by G(z). The discriminator is essentially a binary classifier where
a value of 0 indicates fake samples and 1 is real samples. The ultimate goal of the
generator is to fool the discriminator such that the probability of D(G(z)) is close to
0.5, meaning that the discriminator essentially has to guess whether the input is either
fake or real. To achieve the aforementioned goal, the generator has to adapt according
to the loss produced by the discriminator. Recall that the loss is generally calculated
bymeasuring the distance between the desired output and the actual generated output
with some explicitly defined loss function. To understand the loss function used in
GAN, we have to revisit the Binary Cross-Entropy (BCE) loss function 2.5, which we
refactor according to our discriminator D and the output of G(z), which gives us the
following equation:

min
G

max
D

Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z))] (2.14)

It has been shown that the optimal solution always occurs when pdata(x) = pz(z) [12].
Because the optimal solution always occurs when both distributions are equal, solving
the Jensen-Shannon divergence between pdata(x) and pz(z) is equivalent to solving the
optimization in 2.14.

Although if the loss function in 2.14 has been proven to eventually reach the optimal
solution when trained, the practical results have shown that the models tend to
converge very slowly and also suffer from saturated gradients, which eventually halts
the process of gradient-based optimization. To improve the training process, a
modification of 2.14 was proposed by [13], which shows that one still reaches the exact
optimal solution if Ez∼pz(z)[log(1−D(G(z))] is changed to−Ez∼pz(z)[log(D(G(z))].

Themain challenge of GANs is still the training process and is an active area of research
as of this writing. As of current, many loss functions have been proposed to improve

12

CHAPTER 2. BACKGROUND AND RELATEDWORK

the aforementioned problems of unstable training and saturated gradients. Onewidely
adopted loss metric, used in many GAN architectures today, is the Wasserstein metric
which has been shown to improve both training stability and the optimization process
of the model [2].

Figure 2.4.1: Diagram over the GAN framework

2.4.1 Wasserstein Distance
The Wasserstein distance, also referred to as the ”earth-moving” distance, offers a
unique approach to defining the distance between two probability distributions. It
seeks to find the optimal transport plan that will shift one distribution P towards
another distribution Q. The Wasserstein-1 distance is formally given by the following
equation:

W (P,Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ||x− y|| (2.15)

In this equation, W (P,Q) denotes the distance of the optimal transport plan and
Π(P,Q) represents the joint distribution of P and Q. The symbol inf denotes the
greatest lower bound, or in this context, the transport plan that yields the minimum
transport cost. Arjovsky et al. (2017) [2] showed that the Wasserstein metric has
certain properties in comparison to other metrics used for assessing similarities
betweenprobability distributions. Particularly, the gradients of theWassersteinmetric
do not saturate or explode during training, which improves the process of model
optimization. However, the optimal transport plan expressed in Equation 2.4.1 can
be highly intractable due to the infinite possible ways of constructing the transport
plan. To overcome this issue, Arjovsky et al. [2] proposed a naive, yet effective
solution of applying weight clipping to the Wasserstein metric. GAN architectures
have adopted theWassersteinmetric with weight clipping as a loss function, leading to
improved training stability and sample quality acrossmultiple architectures, compared
to previous loss functions. Gulrajani et al. (2017) [14] further enhanced the
Wasserstein loss by introducing gradient penalty instead of weight clipping, which

13

CHAPTER 2. BACKGROUND AND RELATEDWORK

has been demonstrated to further improve the training stability and the quality of
generated samples.

2.5 Related Work
A typical domain where the collection of user behavioral data is common is the field of
usability testing. The purpose of usability testing is to affirm whether the UI design of
a product is satisfactory, ultimately providing a high level of user experience.

Kobayashi et al. [23] constructed a 2-week experiment where 20 elderly participants,
ranging in age from 60 to 70, performed four touchscreen operations: tapping,
dragging, pinching without panning and pinching with panning. The experiment’s
goal was to detect possible hurdles that the UI design may pose to the users and
record changes in participants’ performance during the experimental process. The
result was quantitatively presented by calculating the average scores in time taken to
complete a specific operation and the accuracy in performing the procedure, e.g., how
many taps were required to press a button successfully. A qualitative assessment was
done by interviewing the participant regarding possible hurdles when experimenting.
The result states that the overall performance of almost all tasks, excluding tapping,
was increased during the phase of 2 weeks. The authors also provide suggestions on
guidelines regarding design implications that should be considered when designing a
UI with respect to the elderly population. A limitation, also stated in the paper, was
the absence of younger participants, which removes the possibility of analyzing the
difference in performance between age groups.

Tsai et al. [38] constructed an experiment where three sets of groups, children (aged
10-14 years), adults (aged 18-34 years), and elderly (over 60 years) each with 47
participants, performed various UI gesture tasks on three different smartphones, each
with a different display size. The examined UI gestures were the dragging task, pinch
task, double-touch drag task, multi-long press task, and slide-down task. The study
aimed to detect how the display size and the age factor affect the performance of each
examined UI gesture. The performance of each UI gesture was recorded using the
total time taken to complete the task and the number of attempts before completing the
task. The authors used a single-factor ANOVA test to assess the difference between the
different groups and found that the age factor significantly influenced all gestures. The
elderly were the slowest, and the adults and children showed no statistical significance
in performance in completing the gestures. The authors state limitations regarding
the generalizability of the gathered results. They stated that the recruitment of
participants was limited by time and cost, ultimately leading to participants sharing
the same cultural background. Additionally, the authors remarked that all elderly
participants were healthy residents without any noticeable health deficiencies; thus,
one should be careful to generalize the elderly results with respect to the overall elderly
population.

Both [23] and [38] offer insights into usability testing across different user groups and

14

CHAPTER 2. BACKGROUND AND RELATEDWORK

contexts. However, the method used to gather user data has shown to be both costly
and time-consuming, which can negatively affect the time for actual research. One
approach to reducing the overall cost and time spent on collecting data is to deploy a
synthetic data generator whose goal is to replicate the characteristics of the original
data. The GAN framework is one proposed solution for synthetic data generation
that has been deployed in numerous domains, such as image generation, tabular data
generation, and time series generation[20]. Both image generation and tabular data
generation do not fit our problem description; usability testing often requires the user
to perform a task over a time period, which leaves time series generation as a suitable
solution for our problem description. Numerous GAN architectures designed for time
series generation have been proposed [27],[6], [41].

Esteban et al. [6] made an initial attempt to adapt the vanilla GAN architecture for
handling time series data. They proposed 2 architecture designs, one called RGAN
which substitutes the networks within the original GANwith vanilla RNN networks for
both the generator and discriminator, and the other named RCGAN which conditions
both RNNs within the network using auxiliary information. Both models were trained
on a medical dataset that contained records of 200.000 patients across the US, where
information about the patients heart rate, respiratory rate, oxygen saturation rate,
and mean arterial pressure was measured every five minutes. Furthermore, the
dataset were downsampled to one measurement every fifteen minutes by taking the
median value of the time window. The authors evaluated the GANs performance
based on the maximum mean discrepancy score to compare the similarity between
the real and synthetic distributions. Furthermore, the authors proposed the ”Train on
Synthetic, Test on Real” (TSTR)method to evaluate the GANs performance when used
in a classification task. The results indicate that RCGAN produces high fidelity data
that produces diversity in samples, meaning that the real and synthetic distributions
are statistically similar, while also achieving good performance when trained on the
classification problem. The paper do however not consider whether the temporal
correlation within the generated samples are followed according to the real dataset.
Also, the GAN is trained on a relatively short sequence length (30), and may not
produce as good results with longer time series.

Yoon et al. [41] published a new architecture called TimeGAN which aims to resolve
prior issues where the only feedback used to learn the underlying distribution was
based on the discriminator loss, which does not concern about preserving the temporal
dynamics within the synthetic data. TimeGAN introduces 4 kinds of components, the
encoder which transforms the time series to a latent space representation, the decoder
which transforms the latent space representation back to the time series domain, and
the last 2 components being the generator and discriminator, similar to vanilla GAN.
The training process involves 2 phases, first phase trains the encoder-decoder networks
to help understanding the temporal dynamics within the time series training data. The
other phase performs the standardGANprocedurewhere the generator tries to fool the
discriminator with the synthetic samples. The proposed architecture was evaluated on
multiple real-world dataset and the GAN performance were compared to other GAN

15

CHAPTER 2. BACKGROUND AND RELATEDWORK

solutions, one being the previously mentioned RCGAN. The results were evaluated
using both quantitative and qualitative measurements. For a qualitative assessment,
the authors performed t-SNE and PCA analysis to visualize how close the distributions
between the real and synthetic samples resembles in a 2-dimensional space. For the
quantitative assessment, the authors performed a TSTR test, as previously described,
but added an additional task for predictive modelling. The result showed that the
TimeGAN architecture consistently outperformed previous GAN architecture across
all dataset in both the classification and predictive modelling tasks, indicating a high
fidelity in the synthetic data. One limitation of TimeGAN is the lack of long sequence
data testing, and also that the architecture does not incorporate attribute information
about the time series which can be valuable when individual sequences carry certain
characteristics.

Alankar et al. [27] saw the limitations within both [41] and [6], and proposed a
new GAN architecture called doppelGANger to further improve the fidelity of long
sequence time series generation and also incorporate possible attributes that the time
series may carry. The proposed architecture was compared against both TimeGAN
and RCGAN using three different, network related, datasets. The authors used the
TSTR methodology for a quantitative assessment. For the qualitative measurements,
the average auto-correlations alongside various statistical distributionswere visualized
to further affirm the diversity and quality of the synthetic data. The doppelGANger
architecture show great results across all metrics when compared to previous
GAN architectures, where the model provides better fidelity on longer sequences,
incorporates the auto-correlations present in the real datasets and also show diversity
in generated samples. DoppelGANger also outperforms the other GAN architectures
when trained on smaller datasets, which is promising for our use-case. In this
study, the doppelGANger architecture will be used as the underlying architecture
for generating synthetic data. More details about the structure of doppelGANger is
presented in section 3.4.2.

16

Chapter 3

Experimental Design

3.1 Research Question
As discussed in the introduction chapter, collecting user data from various user groups
can be challenging in many cases, especially when the groups are hard to access. For
instance, the collected data may be used to improve the quality of an existing product.
The limited data which reflects the user groupsmay not be enough for a proper analysis
of various trends and patterns in the dataset. This can negatively affect the analysis of
the dataset as the product may be more adapted to the commonly occurring group.
The goal of this study is thus to examine to which degree GANs can be used to generate
synthetic user behaviour of various user groups. To tackle the goal of this study, we
introduce two set research questions,RQ1 andRQ2, which combined aims to answer
whether one could generate sufficiently good synthetic data of various user groups
when interacting with a mobile user interface, using GANs. The set research questions
are the following:

• RQ1: How well does synthetic data resemble UI interaction data for different
user groups?

• RQ2: How well does the synthetic UI interaction perform compared to real user
interaction data?

The upcoming sections will describe the various design decisions and techniques used
to help answering the set research questions.

3.2 Experimental Overview
The experiment comprises several stages designed to address the research questions
mentioned earlier. Before starting the experiment, we have to define what type of
action the user should perform, that is, the UI interaction we want to capture and what
kinds of user groups the study mainly focuses on. The UI interaction is a simple drag-
and-drop operation where the user drags a target widget to a designated destination

17

CHAPTER 3. EXPERIMENTAL DESIGN

Figure 3.2.1: Overview of experimental stages during project

on the screen. The user groups on which the data collection is based are the young and
elderly populations.

As illustrated in Figure 3.2.1, the initial stage involves collecting the drag-and-drop
sequences via a custom-developed Android application. Before the commencement
of each experiment, participants complete a questionnaire about their age, dominant
hand, and the finger they most commonly use when operating a smartphone. Upon
finishing the questionnaire, participants start with the drag-and-drop sequences. A
single experiment consists of 15 consecutive runs, where each run is a single drag-and-
drop sequence.

The gathered data is subsequently consolidated into a single dataset, encompassing
all experiment runs. This dataset is further divided into two sub-groups: the elderly
and young populations. These two datasets are then independently pre-processed for
training the generative model. Following training, two SDGs will be available, each
generating synthetic drag-and-drop sequences for the specified user group.

Themodels will be employed to generate datasets, whichwewill subsequently combine
and assess using quantitative and qualitative measurements. The analysis aims to
ascertain the quality of the synthetic data and its performance relative to the real data,
ultimately addressing the previously mentioned research questions.

3.3 Data Collection
The initial step in all machine learning projects involves obtaining the relevant data,
which can be used to fit an arbitrary model in order to achieve a specific goal. In
our case, the data should represent user behaviour when interacting with a phone
screen.

This study primarily focuses on the drag-and-drop operation, during which the
user moves an arbitrary square to a predetermined destination. Other typical user
interactions could be tested, such as pressing buttons of various sizes or pinching
widgets within a specific range. We believe that if one successfully trains a model
using the drag-and-drop technique, the suitability of using GANs in other settings
should not exhibit significant differences. Additionally, we divide the main dataset
into two separate datasets, each representing a specific user group. The motivation for
splitting the dataset between the user groups is that each dataset will be pre-processed

18

CHAPTER 3. EXPERIMENTAL DESIGN

individually and used for training a GAN according to the pre-processed dataset. In
this study, we split the dataset based on participants’ age.

3.3.1 User Task
The data used in this project was collected using a custom-developed Android
applicationwhichwas designed to capture statistical information about the participant,
as well as their interaction when performing the drag-and-drop operation. The
application starts by providing the user with a questionnaire, depicted in figure 3.3.1,
which is mandatory to complete before starting the actual tests.

After completing the questionnaire, the user is promptedwith two squares, one labeled
DRAG and the other DROP. The task is tomove theDRAG square to theDROP location
as depicted in figure 3.3.2. A timer starts only when the user starts moving the DRAG
square and stops only when reaching the DROP. When the user successfully drops the
square in the designated position, the positions of the squares are randomly moved
across the UI and a new run of the experiment is started. The user performs a total of
15 drag-and-drop sequences.

When the experiment is completed, a sequence of coordinates ordered over time,
reflecting the drag and drop, alongside the questionnaire are stored in separate tables
inside a database. Both tables are connected using a unique id that each participant is
assigned at the start of an experiment.

Figure 3.3.1: The questionnaire which the user has to complete before starting the
experiment

19

CHAPTER 3. EXPERIMENTAL DESIGN

Figure 3.3.2: The user has to move the square to the designated drop location

3.3.2 Collected Data

Drag-and-drop

Each drag-and-drop operation can be viewed as a continuous alteration in the x and y

coordinates over a time period until the destination is reached, as illustrated in Figure
3.3.4. The rate at which the coordinates are recorded is set to 10 ms, signifying that
a total of 100 data points are collected per second. We believe this rate is sufficient
to capture the majority of user interactions. As the data points are gathered over a
time period, the comprehensive dataset will comprise multiple time series, with each
sample representing a single drag-and-drop sequence. Even if the user drops the
square outside the designated drop location, the coordinates are still captured each
time frame. Important to note is that each sample may have varying lengths due to
the randomly placed starting and destination positions of the drag-and-drop and the
participant’s individual ability to complete the task in a given time frame.

A single drag-and-drop sequence is depicted in figure 3.3.3 where the starting
(xstart, ystart) = (800, 0) and the destination (xdest, ydest) = (400, 890) over 110 time-steps
where each time-step is 10ms. The blue and orange line shows the change in both x
and y coordinate over the given time frame.

20

CHAPTER 3. EXPERIMENTAL DESIGN

Figure 3.3.3: A single drag-and-drop sequence from start to finish

Figure 3.3.4: Example of drag-and-drop sequence where the starting square is
displaced to the target destination. The coordinates are captured at each time step

21

CHAPTER 3. EXPERIMENTAL DESIGN

User Statistic

In addition to the aforementioned time-series data, the dataset also encompasses
information that remains constant at each time step. In this study, we collect data
pertaining to participants’ age, dominant hand, and finger used during testing. The
dominant hand and finger utilized are of a boolean nature, signifying either the left or
right hand, and finger or thumb, respectively.

Conversely, the age variable is divided into four groups, ranging from 0-16, 17-30,
31-45, and above 45. This metadata is employed to examine biases and trends
within the dataset. Furthermore, we utilize the metadata to differentiate between
various user groups, in this instance, segregating between the elderly and younger
populations.

3.4 Synthetic Data Generation

3.4.1 Pre-processing
The pre-processing of the dataset is a crucial step in ensuring that our model achieves
optimal performance during its training phase. The initial step in our pre-processing
involves removing outliers from the raw dataset. Subsequently, we must pad the time
series to equal lengths for model training. Lastly, the time-series coordinates are
normalized prior to the training process.

Remove Outliers

A common occurrence when collecting data from arbitrary sources is the presence of
outliers in the dataset. An outlier can significantly impact the quality of our dataset
when attempting to fit it into a machine-learning model. This is particularly true in
our case when handling time-series data, as we must pad all time series according to
the longest sequence. For example, if the average number of time steps across all time
series is 150 and an outlier within the dataset has 400 time steps, the majority of time
series must be padded with 250 empty points, which can negatively affect the training
process later on.

The approach used to remove all outliers from the dataset involved excluding all time
serieswith a length larger than the fourth quartile,Q4. To obtain the fourth quartile, we
first had to gather the individual lengths of each time series and calculate the quartiles
Q1 and Q3, where Q1 is the highest value in the 25% percentile range, and Q3 is the
highest value within the 75% percentile. By determining these points, we can calculate
the fourth quartile using the following equation: Q4 = Q3 + 1.5(Q3−Q1).

Padding Time-series

As previouslymentioned, each drag-and-drop sequencemay vary in lengthwhich gives
us an inconsistency in our feature representation. All machine learning models are

22

CHAPTER 3. EXPERIMENTAL DESIGN

essentially a function f : X → Y , where X ∈ Rn and Y ∈ Rm. The machine learning
model thus requires a fixed length input which we can achieve if all our time series are
of the same dimension. One solution to this problem is to pad all time series with an
arbitrary value til reaching the length of the longest occurring sequence, excluding the
outliers. For instance, imagine if our datasetX consists of 3 samples with the following
elements respectively:

X = [[15, 23], [6, 103, 5], [1, 3, 10, 15, 54]]

The longest sequence inside X is the last sample X3 ∈ R5 while X1 ∈ R2 and X2 ∈ R3.
Applying padding to this dataset yields the following new dataset:

Xpadded = [[15, 23, 0, 0, 0], [6, 103, 5, 0, 0], [1, 3, 10, 15, 54]]

Where X1 and X2 are padded with 0. It is essential to consider that the value utilized
for padding the dataset should not conflict with existing values within the dataset, as
it is necessary to distinguish the starting point of padding within a given sequence to
retain the prior knowledge of our original dataset.

In our dataset, we introduce a new feature alongside the existing x and y coordinates
called padwhich has either 1 indicating not padded and 0 indicating padded. This new
feature’s sole purpose is to indicate whether the current (x, y) pair is padded or not in
a particular time series.

When applying padding to the young and elderly datasets, we must consider the
longest time series excluding outliers. The longest time-series sample within the young
population dataset is 265, while the longest for the elderly population dataset is 410.
Consequently, all samples within each dataset are padded to the lengths of 265 and
410, respectively.

Normalization

Normalization is a widely used technique for scaling a dataset to values within a
bounded interval. The benefits of a normalized dataset include consistent values
across the dataset, which stabilizes gradient-based learning and facilitates fastermodel
convergence [36].

In our case, the x and y coordinates within the dataset are constrained by the
dimensions of the phone used during the experiments. The x and y values can
significantly vary among the time series within the dataset, primarily due to the
random displacement of each run. To ensure consistency in our dataset, we normalize
the coordinates such that x, y ∈ [−1, 1] by employing the following formula:

xnorm = 2
x− xmin

xmax − xmin

− 1 (3.1)

23

CHAPTER 3. EXPERIMENTAL DESIGN

Figure 3.4.1: Left shows the non-normalized sample within the original dataset and
the right shows the same sample but normalized.

It is crucial to emphasize that we apply 3.1 to each x and y vector individually within
the dataset. This process is demonstrated in Figure 3.4.1, where the original dataset,
comprising all time series, has been normalized in accordance with 3.1.

3.4.2 GAN Architecture
This project uses the doppelGANger architecture, depicted in figure 3.4.2, as the
underlying network for generating the synthetic data. The motivation behind using
doppelGANger instead of other existing architectures [6, 41] was mainly due to worse
fidelity when the GANs were trained on long sequence data [27].

Furthermore, we introduce two distinct GANs, one for the younger population
and another for the elderly population. Both GANs share the same underlying
architecture (DoppelGANger) but differ in (1) the input dimensions and (2) the
configurations of each component within the architecture. The choice of settings was
based on manual tuning of the individual components and observing their impact on
model performance, as well as guidelines from the original author of DoppelGANger
[27].

The architecture uses five distinct networks, the metadata generator, the time series
generator, the min/max generator, the auxiliary discriminator, and the primary
discriminator.

In this project, we exclude the use of the metadata generator. Because we introduce
2 separate GANs, one for the elderly and younger populations, there is no need to
generate attributes that correlate each generated time series with the corresponding
user group.

For themin/max generator, we use a denseMLPwithReLUactivation at each layer and
a single output value. The input to the network is a noise vector drawn from aGaussian

24

CHAPTER 3. EXPERIMENTAL DESIGN

distribution and the output is the metadata that we want to generate. In our case, the
metadata is the (min±max)/2 value we try to learn for each sample within the dataset.
This metadata value is then used as a conditional value to the time series generator
input, meaning that we generate the drag-and-drop sequence, given themetadata. The
metadata is used as an internal, per-sample normalization to preserve the fidelity of
the generated samples by learning the ranges of each individual sample within the
dataset. This has been shown to improve the quality of the data but also mitigate the
consequence of amode-collapse [27]. Mode collapse is the consequencewhen theGAN
produces similar to nearly identical samples for different input noise vectors [11].

The time series generator uses an RNN network with LSTM units to generate the
drag-and-drop sequences. The input is the previously generated (min±max)/2 value
alongside the noise vector drawn from a Gaussian distribution. Depending on the
settings used, one could generate multiple sequences per RNN unit, which is also
referred to as a batch generation. The authors of [27] claim empirical evidence that
a batch generation of 5 and higher improves the model’s ability to capture temporal
correlations within each sample for longer sequences. Different batch generation sizes
are tested and evaluated based on the results.

The auxiliary discriminator is a dense MLP using the ReLU activation at each layer.
The model takes the implicitly generated metadata, that is, the (min ± max)/2, and
compares it with the real sample (min±max)/2 value. The auxiliary discriminator aims
to judge whether the min/max generator has learned the underlying (min ± max)/2

distribution of the actual dataset. To compare the values, we use the Wasserstein-1
metric with gradient penalty as our loss function; see section 2.4.1. The discriminator,
similar to the auxiliary discriminator, also uses a dense ReLU MLP but instead takes
the output of the time series generator and compares it with the real drag-and-drop
sequences. The loss value is the difference between the synthetic sample distribution
and the real sample distribution, which is also calculated using the Wasserstein-1
metric with gradient penalty.

The auxiliary discriminator and the discriminator’s loss values are combined into
a single value, the total loss of the GAN network. The loss value of the auxiliary
discriminator can be scaled to increase/decrease its overall effect when updating
the complete network. When updating the model’s parameters, we use the Adam
optimizer, which is an efficient extension of the stochastic gradient descent algorithm
that has been widely adopted as a good baseline optimizer [22].

25

CHAPTER 3. EXPERIMENTAL DESIGN

Figure 3.4.2: Overview of the doppelGANger architecture [27]

3.4.3 GAN Training

When training both GANs, we need to specify the number of epochs and the batch
size used during training. The batch size represents the number of samples employed
to update the model’s internal weights during one training iteration. For instance, if
we use a batch size of 1 and the dataset contains 100 samples, the model’s internal
weights are updated 100 times per epoch. In both GANs, we utilize a batch size that
includes all samples of the dataset, primarily due to the small datasets used during the
experiments. Employing a larger batch size also mitigates the otherwise fluctuating
loss values that are common when using smaller batch sizes. The number of epochs is
set to an arbitrary number and then incrementally increased or decreased based on the
model’s performance. Themodels’ performance is evaluated using various techniques,
which are discussed later in this chapter.

3.4.4 Post-Processing

After training the GANs, we can now prompt both the attribute and time series
generators, using a random input vector, which allows us to produce an arbitrary
amount of synthetic drag-and-drop sequences. The raw generated data does however
require additional processing before we can evaluate its quality. First, we have to re-
normalize the coordinates back to the original ranges. This is easily done by using the
normalization formula in 3.1 and solve for x which yields:

x = (xnorm + 1)
(xmax − xmin)

2
+ xmin (3.2)

Note that we have to store theminimum andmaximum occurring values in the dataset
during the pre-processing step.

26

CHAPTER 3. EXPERIMENTAL DESIGN

Figure 3.4.3: EMA applied over the generated coordinates

Alongside reverting the values back to the original ranges, we also have to remove any
potential padding that the generated data may include. Recall that in section 3.4.1 we
introduce a new feature called pad which the GAN is also trained to learn. To remove
padding, we remove all entries inside a single sample which has pad = 0.

The last step in our post-processing is to apply a moving average to the synthetically
generated coordinate sequences. Themotivation behind using amoving average to the
data was to remove any noise which the generators may produce. For our purposes,
we use a exponential moving average (EMA) which is commonly used when we want
to weigh more emphasis on the most recent data points. To calculate EMA on a given
sample, the following formula is used:

yt = (1− α)yt−1 + αxt (3.3)

where yt is the calculated EMA at time t, α is the smoothing factor which specify how
much emphasize the most recent observation should have. αmust be a value between
0 < α ≤ 1 and xt is the data point at time t. Figure 3.4.3 shows the result when
applying EMA over a synthetically generated drag-and-drop sequence where α is set
to 0.2.

3.5 Evaluating the Synthetic Data
Evaluating the GANs performance has shown to be very hard compared to other
domains in machine learning [6, 13, 27, 41]. Normally in many domains, we can
evaluate our model’s performance based on the calculated loss values at each epoch. If
the loss converges towards a small value, we may assume that the model has properly
learnt the underlying distribution. In the case of GANs, the loss value is calculated

27

CHAPTER 3. EXPERIMENTAL DESIGN

based on the discriminator’s performance in distinguishing real from fake samples.
The generator uses the discriminator’s loss value to adjust its internal weights, hence
the generator uses an implicit loss that is not objectively based on the quality of the fake
samples. Thus to ensure that the generator inside the GAN provides good samples, we
have to combine both quantitative and qualitative measurements.

In this study, the aim of the quantitative measurements is to assess how well the
synthetic samples perform compared to the real dataset. To achieve this, we employ
an RNNmodel for a simple classification task.

The qualitative measurements are intended to analyze whether the generated output
follows the same trends and patterns as the original data. This is accomplished
by using various visualization plots to depict the statistical properties of the overall
datasets. Additionally, to determine whether the synthetic data exhibits diversity in
the generated samples, we select random samples within the synthetic dataset and
examine how closely they align with the samples in the real dataset.

The upcoming sections will delve into more specifics on what methods are used to
answer the research questions RQ1 and RQ2.

3.5.1 RQ1

To answerRQ1, we rely on various techniques to detect whether the generative model
has successfully learned the underlying distribution of the original dataset.

Because our dataset is of time series format, we have to consider the temporal
correlations within the samples when analyzing the datasets. One approach which we
use to analyze whether the synthetic dataset shares statistical similarities with the real
dataset was to calculate the average delta distance △d from the current drag position
(xi, yi) to the designated drop location (xdrop, ydrop) at each timestamp ti. Another aspect
to consider is how well the synthetic data follows the per sample length distribution.
This is simply done by removing the padding of each sample within the synthetic
dataset and compare the resulting sample lengths of both datasets.

Lastly, to ascertain whether the synthetic dataset demonstrates diversity in its samples,
we calculate the k-nearest neighbors of a randomly selected synthetic sample and
compare it to the samples in the real dataset. We use a k-value of 3, meaning that we
extract three samples in the real dataset. Dynamic time warping (DTW) is used to find
the nearest neighbors withing the datasets. DTW is an algorithm which is commonly
used to measure the similarity between two time series with varying lengths, which is
common in our datasets. In its essence, DTW seeks to align the compared time-series
such that their euclidean distance minimizes [37]. The samples that results in the least
distance relative to the synthetic sample is considered its nearest neighbor.

28

CHAPTER 3. EXPERIMENTAL DESIGN

3.5.2 RQ2

The technique used to test the quality of the synthetic data is based on the train on
synthetic, test on real (TSTR) methodology[7]. The method uses an external machine-
learning model trained on synthetically generated data and evaluated based on the
real data. This approach aims to determine whether the synthetic data can be used
to either replace or augment the existing dataset based on the scores achieved when
evaluating the model. In this experiment, we train an RNN model for a classification
task. The classification task is a simple binary classification where we try to train the
model to distinguish between the younger and elderly samples. Figure 3.5.1 depicts the
workflow on how TSTR is designed for our classification experiment. First, we have
to generate the samples for the respective user group using the already trained GANs
using a noise vector z. The samples are then merged into one dataset, which is pre-
processed similarly to how the datasets were pre-processed when training the GANs,
except that we also add a field for labeling the samples as either elderly or young. We
then use the synthetic dataset to train the model, which is chosen as a simple RNN
with LSTM units. The trained model is then tested based on the real dataset and
the performance is evaluated based on its recall, precision and F1 score. The recall
is defined with the following formula:

Recall =
TP

TP + FN
(3.4)

Where TP stands for the true positives, FP for the false positives and FN for the false
negatives. The precision is based on the following formula:

Precision =
TP

TP + FP
(3.5)

and the F1 score, which is the harmonic mean of the precision and recall scores, is

Figure 3.5.1: High-level overview of TSTR used in our experiment

29

CHAPTER 3. EXPERIMENTAL DESIGN

calculated using the formula:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(3.6)

Alongside training a RNN on synthetic data, we also train the same RNN using the
real dataset which provides a baseline for comparison. If the metric scores are similar
across both the synthetically trained model and the real, we may assume that the
quality of the synthetic data is similar to that of the real data.

30

Chapter 4

Implementation

4.1 Overview of Implementation
The implementation consists of 2 separate parts, the mobile application and the
experimentation platform. The mobile application was developed using Android
Studio and the code was written using Java. The experimental playground was
deployed using docker. Docker is a virtualization service that builds sandboxed
containers that run on top of the docker engine [5]. Docker was used to providing a
platform-independent playground that enables fast and shareable results, ultimately
mitigating the problem of missing dependencies when one tries to replicate the
experimental results. Within the container instance, we use JupyterLab to construct
the experiment regarding synthetic data generation. As depicted in figure 4.1.1, a
total of 5 notebooks were used to construct the experiment. The database_fetcher
is responsible for retrieving the data from the database, alongside converting the
raw data to a Comma-separated Values (CSV) file. The CSV-file is then processed
inside of user_statistic, where we remove outliers and divide the CSV-file into two
separate files, one representing the younger and elderly population. The GAN_elderly
and GAN_young notebooks are responsible for the pre-processing and training of
the GANs. The evaluate notebook contains the various qualitative and quantitative
evaluation techniques we use to determine whether the GAN produces satisfactory
results. All notebooks were written using Python 3.8.

4.2 Data Collection

4.2.1 Mobile Application
To gather data, a mobile application had to be developed to (1) gather the drag-and-
drop sequences (2) gather user information such as participants age and (3) store the
data in a database.

As previously mentioned in section 3, we wish to capture the drag-and-drop operation

31

CHAPTER 4. IMPLEMENTATION

Figure 4.1.1: Overview of the implementation

of various users, which we later use to train the GAN model. Figure 4.2.1 display the
logical order in how the we capture the drag-and-drop sequences for each participant.
When the user finishes the questionnaire, a new page will appear with 2 squares, a
draggable squarewhichwe label ”DRAG” and the target squarewhichwe label ”DROP”.
To capture the dragging sequence, we useAndroidsDrag andDropAPI, which provides
useful event and callback functionality that we can use to detect various user actions
but also gather information about the given interaction, such as the current coordinate
position on the screen. The main events we listen to is (1) the initial interaction with
the square, and (2) when the user drops the square, and (3) when the user drags the
square.

When the user starts dragging the square, an event is fired which captures the (x, y)

coordinate at irregular time frames. To ensure thatwe get evenly spaced capture points,
we employ a external timer that is called every 10ms. When the timer is fired, we store
the currently captured coordinates in a list. When the user drops the square outside the
designated location, we store the last recorded finger position each 10 ms. When the
square is dropped in the target section, we check whether the number of iterations are
complete, if not, randomly position the squares and start a new iteration. If the number
of iterations are complete, we store all recorded drag-and-drop sequences in a remote
database. The number of iteration was set to 15, meaning that a single participant
provides 15 unique time series samples.

32

CHAPTER 4. IMPLEMENTATION

Figure 4.2.1: Workflow of drag-and-drop experiment

4.2.2 Data Storage
We use Google’s database service Firebase to store the time series data. Firebase
provides an easy-to-use API to store the time series and questionnaire data efficiently.
Alongside the easy-to-use API, the Firebase service is also free to use until reaching a
certain data storage threshold. Firebase stores values in JSON format, and each entry
is referred as a node. Nodes inside the database can have child nodes, enabling easy
querying when extracting the data. We introduce two root nodes to store our data: the
time series data and the questionnaire data.

Figure 4.2.2 shows how we store individual entries of each participants and their
corresponding information. Each participant, prior to starting the experiment, is
assigned a Universally Unique IDentifier (UUID). UUID is a 128-bit number that
guarantees uniqueness across both space and time [25]. We use the UUID to separate
each entry within the database. The UUID node contains 3 child nodes that store
the information about the participant’s age, dominant hand, and whether a finger
or thumb was used during the experiment. For the time series storage, depicted in
figure 4.2.3, we also use the UUID to bundle all individual drag-and-drop sequences.
EachUUIDhas fifteen child nodes that correspond to a single drag-and-drop sequence.
As a reminder, we store fifteen entries because that’s the total number of iterations
each participant performs. Within each iteration, all data points, captured at a 10ms
interval, are stored. Each data point contains information about the current (x, y)
value, whether the user is dragging or not, and the timestamp in which the coordinates
were captured in. Note that each entry may contain various lengths, meaning that e.g.
iteration 1may contain 150 data points while iteration 2 contains 200 data points.

33

CHAPTER 4. IMPLEMENTATION

Figure 4.2.2: Figure shows how the questionnaire information is stored in Firebase

Figure 4.2.3: Figure shows how the drag and drop information is stored in Firebase

34

CHAPTER 4. IMPLEMENTATION

4.3 Synthetic Data Generation

4.3.1 Dataset
The data stored in the database is retrieved and bundled into two CSV files (Comma-
Separated Values), one for the younger population and the other for the elderly. Both
files are identical in structure and contain the time series entries and the questionnaire
information. To access and further process the data, we utilize Pandas, a popular
library widely used in data science due to its comprehensive data manipulation and
analysis toolkit [30]. When reading the CSV files using pandas, we attain DataFrames,
which is essentially a 2D table that contains columns, the labels of our dataset, and
rows, which are the entries within that table. In figure 4.3.1, we see the DataFrame
that represents the collected data of the elderly population. We use the ”Long” format
to represent each sample, meaning that each row corresponds to a single time-point,
and all samples are stacked sequentially on the vertical axis.

4.3.2 Pre-Processing
Remove Outliers

To remove outliers, we first have to count and store each sample length within the
DataFrame. By using the id column alongside the iteration number, as depicted in
figure 4.3.1, we can query each sample and store its corresponding length. To calculate
the quantiles of the list, we use numpys quantile function to attain the forth quantile,
Q4. We use Q4 to drop all samples within the DataFrame that has a length > Q4.

Padding Dataset

After removing the outliers in the original dataset, we need to assure that all samples
are of equal length. First, we attain the longest occurring sample within the dataset.
After obtaining the longest length, we add a new column to our existing DataFrame

Figure 4.3.1: DataFrame of the elderly population dataset

35

CHAPTER 4. IMPLEMENTATION

called gen and initialize all rows within this column with 1. Each row with gen = 1

indicates a unpadded row. When performing the padding, we extract each unique
sample within our DataFrame using the id and iteration columns. After extracting the
sample, we iteratemax_sequence_length− len(sample) times and in each iteration we
add the last row of the original sample, which is the occurrence of the user dropping
the square in the target. Additionally, we replace the gen value with 0 to indicate that
the newly added row is used for padding.

Feature representation

To proceed training our GANs, we first have to convert the current padded DataFrame
to a vector which the model can interpret. First, we retrieve the relevant columns
of our DataFrame, namely the x, y and gen columns. This leaves us with a N ×
(x, y, gen) table where N is the same number of rows as in the padded DataFrame.
The table is then reshaped to a three-dimensional vector with the following structure:
(#ofsamples,max_seq_length, features) using numpys reshape function. Now, the
first column represents a unique sample, the second column the sequence values of
the sample and the third column the x, y, gen features. For example, (n, 100, 0) attains
the first 100 x-coordinates of the n:th sample within the vector.

4.3.3 GAN Model
The GAN model is implemented using gretel.ai open-source repository [9]. The
repository provides the class DGAN, which implements all models within the
doppelGANger architecture. The DGAN-class expects a configuration file in its
constructor which is used to adjust the DGAN-model during its initialization. The
configuration class is called DGANConfig which contains variables to adjust the
parameters within a certain model inside DGAN, e.g. the time series generator.
Alongside adjusting the structure of individual models inside the architecture, we can
also specify the number of epochs used for training and the batch size, which specifies
the number of samples the model uses during a single epoch.

Alongside the baseline model, the repository also provides functionalities for the
normalization of the feature vectors prior to training the model, which is used to scale
the features in ranges between [−1, 1].

Training

After initializing the DGAN-class, using the specified settings, we get a model ready
for training. The DGAN-class provides a function called train_numpy which is used
to train the DGAN-model. The function expects a feature vector alongside a list
that specifies the individual feature type. The provided feature vector is the three-
dimensional vector representation of our padded dataset. The feature types are used to
determine whether the features are continuous or discrete. As previously mentioned,
we have 3 features (x, y, gen), the (x, y) coordinates are set to continuous while gen is

36

CHAPTER 4. IMPLEMENTATION

set to discrete. The feature types will ensure that the output vector, produced by the
generator, follows the same type convention as our original feature vector.

Generate Samples

After training the model, synthetic samples can now be produced by providing a
random noise vector to the time series generator. This process is abstracted by the
DGAN class, which provides a function called generate_numpy that takes an integer
n, as an argument, which results in n generated samples. The generated samples
have the same dimension as the three-dimensional vector which we use to train the
model. Additionally, the function also handles the re-normalization of the samples to
the appropriate ranges.

4.3.4 Post-Processing
After generating the synthetic samples, the three-dimensional vectors are transformed
into a pandas DataFrame. To mitigate potential fluctuations within the generated
(x, y) values, we apply Exponential Moving Average (EMA) to each sample within the
DataFrame as specified in 3.4.4. The DataFrame object provides the ewm function,
which calculates the EMA for a given column in the DataFrame. It’s crucial to note that
we should not apply EMA across the entire DataFrame at once because each sample
within the DataFrame is independent of the others. Therefore, we first need to extract
a subset of the original DataFrame that contains a single sample, and then apply EMA
to that subset.

4.3.5 Evaluating the Synthetic Data
As described in the previous chapter, both quantitative and qualitative measures are
used to assess the quality of the synthetic data. To visualize the results, the graphical
librarymatplotlib is used.

Length Distribution

To depict the sample length distribution of the real and synthetic data, we simply
store each samples individual length by first extracting the padded sample from the
DataFrame, then removing the rows with gen = 0. Because each row corresponds to
a 10ms timestep, the time taken for the drag-and-drop sequence corresponds to the
number of unpadded rows times 10ms.

Average Delta distance

To visualize the average delta distance to the target location, the distance vector of
each sample has to be calculated and the added to a single result vector, which is
divided by the number of unique sampleswithin our dataset. The procedure is formally
described in Algorithm 1, where each sample, which is originally padded is unpadded

37

CHAPTER 4. IMPLEMENTATION

by excluding all rows with gen = 0. The target location, which we use to calculate
the relative distance, is the last entry of our unpadded sample. The euclidean distance
between the current (xi, yi) and the target coordinates are then calculated and stored
as a distance vector. To maintain consistency in our dimensions, the distance vector is
padded with 0 until the vector has the length of the longest occurring sequence in our
dataset. The distance vector is then added to a result vector which stores the sum of
all distance vectors. To attain the average distance vector, we divide the vector by the
number of unique samples in our DataFrame.

Algorithm 1 Average delta distance to target

1: function AverageDeltaDistance(DataFrame ∈ Rn×3, K, num_samples)
2: D ← 0 ▷ Initialize a k × 1 vectorD with 0
3: for sample ∈ DataFrame do
4: unpadded← sample\{gen = 0} ∈ RS×2 ▷ Remove padding and drop ”gen”

column
5: x_target← unpadded[S][0]
6: y_target← unpadded[S][1]
7: distance ←»∑S

i=1(unpadded[i][0]− x_target)2 + (unpadded[i][1]− y_target)2 ∈ RS×1

8: for i = 1 in range(K − S) do ▷ pad the distance vector
9: distance[S + i][0] = 0
10: distance[S + i][1] = 0
11: end for
12: D ← D + distance
13: end for
14: returnD\num_samples ▷ Return the average delta distance vector
15: end function

K-Nearest Neighbours

When calculating the k-nearest neighbors of a synthetic sample, we first attain an
arbitrary sample within the synthetic DataFrame. The padded rows within the
synthetic sample are dropped by removing all rows with gen = 0. The Euclidean
distance vector to the target location is calculated with respect to the unpadded
synthetic sample. To calculate the similarity of the synthetic distance vector and
the distance vector of each real sample, we use DTW as described in section 3.5.1.
To calculate the DTW distance between the samples, we use the dtaidistance library
which provides the implementation of the DTW algorithm [39]. The calculated DTW
distance, alongside the currently tested sample, is stored in a list that tracks the result
of each sample within the DataFrame. After processing all samples, the resulting
list is sorted based on the DTW distance, in ascending order. The first k-elements
within the list corresponds to the samples with the smallest DTW distance, which is
used to visualize the nearest neighbor of the provided synthetic sample. The formal
algorithmic description of our implementation is described in Algorithm 2 and 3.

38

CHAPTER 4. IMPLEMENTATION

Algorithm 2 Calculate the k-nearest neighbours using DTW

1: function KNN-DTW(sample ∈ RS×2, DataFrame ∈ RN×3)
2: x_target← sample[S][0] ▷ Get Last x-coordinate
3: y_target← sample[S][1] ▷ Get Last y-coordinate

4: distance ←
»∑S

i=1 (sample[i][0]− x_target)2 + (sample[i][1]− y_target)2 ∈
RS×1

5: result← () ▷ List for storing nearest neighbours
6: for sample_real ∈ DataFrame do
7: unpadded← sample_real\{gen = 0} ∈ RK×2 ▷ Remove padding and drop
”gen” column

8: curr_x_target← unpadded[K][0]
9: curr_y_target← unpadded[K][1]
10: curr_distance ←»∑K

i=1 (unpadded[i][0]− curr_x_target)2 + (unpadded[i][1]− curr_y_target)2 ∈
RK×1

11: dtw_distance← DTW (distance, curr_distance)
12: result← dtw_distance, unpadded ▷ Store DTW-distance and the

corresponding sample
13: end for
14: Sort(result) ▷ Sort by DTW distance in ascending order

return result[0 : k]
15: end function

Algorithm 3 Dynamic Time Warping

1: function DTW(S ∈ Rn×1, T ∈ Rm×1)
2: Initialize a (n+ 1)× (m+ 1)matrixD with∞
3: D[0][0]← 0
4: for i = 1 to n do
5: for j = 1 tom do
6: cost← d(si, tj) ▷ Distance between points
7: D[i][j]← cost+min{D[i− 1][j], D[i][j − 1], D[i− 1][j − 1]} ▷ Choose the

path with minimum accumulated cost
8: end for
9: end for
10: returnD[n][m] ▷ Return the DTW distance
11: end function

39

CHAPTER 4. IMPLEMENTATION

Figure 4.3.2: Cross-validation training of RNN model

Train on Synthetic, Test on Real

As depicted in figure 4.3.3, we take both the elderly and young population synthetic
datasets and merge them into a single dataset. Before we merge the DataFrames, the
DataFrame with the shortest max_sequence_length has to be padded to the length of
the max_sequence_length in the other DataFrame. This step is necessary because a
machine learning model can only be prompted with a certain predetermined input
dimension. Alongside the merged DataFrame, we create a column vector that stores
the values 0 and 1. The value 1 corresponds to a younger drag-and-drop sample
and 0 for the elderly sample. Each sample within the merged DataFrame, Xi has a
corresponding label yiwhich is used to train anRNNmodel to distinguish the drag-and-
drop sequences produced by an elderly or young person. Themodel is built using keras,
which provides a high-level interface of the deep learning library TensorFlow [3]. As
depicted in figure 4.3.2, the model is trained using a cross-validator. The purpose of
the cross-validator is to provide an average estimation of our model’s performance. At
each iteration within the cross-validator, the DataFrame, alongside the labels is split
into batches of shuffled data, where 80% of the data is used for training and 20%
for testing. To preserve the ratio between the elderly and young samples within our
training and testing data, we use the StratifiedKFold function provided by sklearn[33].
Before training the model, we first normalize the training samples and use the same
normalization parameters to fit our testing data. It is important to not normalize the
entire DataFrame before we split the data, as this can result in biased results. The
recall, precision and F1 scores are stored in a list for each iteration and the average
scores are calculated after finishing all iterations.

40

CHAPTER 4. IMPLEMENTATION

Figure 4.3.3: Merged DataFrame and its corresponding labels

4.4 Code Repository
The code for both the mobile application, as well as the synthetic data generation can
be accessed through our public GitLab repository1.

1https://git.cse.kau.se/laoajala100/MasterThesis.git

41

Chapter 5

Result and Discussion

This section includes the gathered results from both the data collection, and the
experiments.

5.1 Data Collection
The data utilized in this experiment were collected at Karlstad University as well as
other public areas throughout Karlstad.

Figure 5.1.1 presents the distribution of various groups within the collected dataset.
The total number of participants was 34, with 19 representing the younger population
and 15 for the elderly. The number of participants who preferred to use their thumb or
finger to perform the experiment was equally distributed. Most participants were aged
17-45, representing 55.9%of all participants, while 44.1%were aged above 45. It should
be noted that the dataset does not include any participants aged 0-17, hence their
absence from the dataset. The majority of participants were right-handed, making up
94.1% of the dataset, while the remaining 5.9% were left-handed.

Figure 5.1.2 provides a boxplot of the individual length of each drag-and-drop sequence
within both the elderly and young datasets. The outliers, represented by the circles,
were removed from the datasets as described in section 3.4.1. After the outliers
were removed, the average length of the time taken to complete the drag-and-drop
sequence was 1.22s for the younger population and 2.64s for the elderly population.
The standard deviation for the elderly was 0.56s and 0.48s for the younger group.
The longest recorded sample within the elderly population was 4.10s and 2.66s for
the younger population. The shortest sample for the elderly population was 1.33s and
0.51s for the younger population.

42

CHAPTER 5. RESULT AND DISCUSSION

Figure 5.1.1: Result from questionnaire regarding the participant information

Figure 5.1.2: Boxplot displaying the per sample length of both the young and elderly
population

43

CHAPTER 5. RESULT AND DISCUSSION

5.2 GAN Parameters
The hyperparameters used of the final GANs used to generate the data to answerRQ1
and RQ2 can be found in figure A.0.1 in the appendix.

5.3 RQ1: Fidelity of the Synthetic Data
In this section, we present the results to answer the research question RQ1, which was
formulated asHowwell does synthetic data resemble UI interaction data for different
user groups?. Figure 5.3.1 display the per-sample length distribution of the real and
synthetic datasets. TheGAN trained on the younger population dataset shows a similar
pattern to the original dataset; both distributions have more occurrences of samples
within the 0.5-1.75s range and fewer samples when the drag sequence exceeds a length
>1.75s. The GAN trained on the elderly dataset also shows a similar structure in the
overall per-sample distribution but more bias toward samples with lengths around 3s.
Table 5.3.1 shows the mean, median, and standard deviation of the real and synthetic
datasets. The mean, median, and deviation of the younger datasets show very little
difference, which supports the similarity displayed in the distribution plots. The mean
of the elderly and synthetic dataset does, however, differ with 83ms which is expected
as the distribution plots show a similar trend within the synthetic dataset.

Figure 5.3.2 shows the average delta distance to the target location of each sample
for both the younger and elderly datasets. The synthetic data of the younger and
elderly population shows an almost identical decrease in delta distance to the target as
time increases. This indicates that the synthetic samples do, on average, incorporate
the temporal correlations between the (x, y) coordinates within each sample. Both
the elderly and younger synthetic data do, however, display a small increase of delta
distance in the early stages of the drag-and-drop. The elderly synthetic data shows a
small offset in divergence compared to the actual dataset. This is to expect as the prior
analysis regarding the per-sample distribution shows that the elderly synthetic data
has, on average longer samples.

In order to verify whether the synthetic data generated by both GANs has not
memorized the original dataset, we select three random samples from the synthetic
datasets and retrieve their nearest neighbor within the original dataset. Figure 5.3.3
and 5.3.4 depict the resulting nearest neighbor of the younger and elderly population
synthetic data. We see that the synthetic samples from both population groups follow
a similar trend observable in the original datasets. The samples do, however, differ in
length when compared to their nearest neighbors, which indicates that the synthetic
samples are not present in the original dataset. We can also observe that the first and
third synthetic samples within the younger population contain noise in the beginning
stages of the sequences, indicated by the sudden increase/decrease in the delta distance
to the target location. Similarly, for the third elderly synthetic sample, we observe a
slight sudden change in the delta distance at the beginning of the sequence.

44

CHAPTER 5. RESULT AND DISCUSSION

Figure 5.3.1: Sample length distribution for the real and synthetic datasets

Dataset Mean (s) Median (s) Std. Dev. (+/- s)

Real (Younger) 1.224 1.130 0.476
Synthetic (Younger) 1.218 1.160 0.425
Real (Elderly) 2.634 2.635 0.562
Synthetic (Elderly) 2.717 2.745 0.559

Table 5.3.1: Mean and standard deviation of the sample length distribution

Figure 5.3.2: Average delta distance to target location

45

CHAPTER 5. RESULT AND DISCUSSION

Figure 5.3.3: Nearest neighbors of the synthetic samples (Young)

46

CHAPTER 5. RESULT AND DISCUSSION

Figure 5.3.4: Nearest neighbors of the synthetic samples (Elderly)

47

CHAPTER 5. RESULT AND DISCUSSION

5.4 RQ2: Performance Evaluation
In this section, we present the results to answer the research question RQ2, which
was formulated as How well does the synthetic UI interaction perform compared to
real user interaction data?. As discussed in previous sections, we deploy an external
validator, in this case a simple RNN architecture to classify whether the drag and drop
sequences belong to the younger or elderly populations. The model used to grant the
upcoming result is displayed in figure A.0.1, present in the appendix. The model is
trained for 50 epochs, and a batch size of 64 is used. The total # of samples amounts to
477, where 382 were used for training and 95 for evaluating the model. Out of the 382
samples, 210 corresponds to the younger population and 172 to the elderly population.
The same proportions are applied to the testing dataset. Figure 5.4.1 depicts each
iteration’s resulting precision, recall and F1 scores within the cross-validation. We
observe that the model performs, on average, better across all 3 metrics when trained
on the real dataset. The synthetic data does, however, score slightly higher in some
iterations, but the difference is close to negligible. Table 5.4.1 shows the average scores
of both the synthetic and real datasets. Both datasets exhibit high recall scores, where
the real dataset edges the synthetic dataset with 2.4%. The variance in recall is also
small in both cases, which indicates that the mean recall is a reasonable estimate for
both datasets. The average precision score between both datasets differs with 1.9%,
where the model trained on the real dataset slightly outperforms the model trained
on the synthetic data. The average F1 score follows a similar trend as with the other
metrics.

Figure 5.4.1: Model performance when trained and tested on both real and synthetic
data

48

CHAPTER 5. RESULT AND DISCUSSION

Metrics Real Synthetic

Recall % 94.0 91.6
Std. Dev. (Rec.)% 4.2 5.4
Precision% 84.8 82.9
Std. Dev. (Prec.)% 5.4 3.1
F1% 88.9 86.9
Std. Dev. (F1)% 1.6 2.5

Table 5.4.1: Average model performance for both synthetic and real datasets

5.5 Discussion

5.5.1 Fidelity of the Synthetic Data

This section aims to answer the research question RQ1, which asks the following: How
well does synthetic data resemble UI interaction data for different user groups?.
The presented result indicates that the elderly and younger population GANs produce
similar per-sample lengths as the real dataset. This indicates that the GANs produce
diversity regarding the individual sample length, but also carrying similar statistical
properties as in the real dataset, where the mean, median and standard deviation are
similar across the datasets. This property is important because, even if we succeed in
generating high quality samples, but the diversity is bad, the synthetic data will not
reflect the properties of all captured use cases in our original dataset. More formally,
we can say that both GANs do not suffer from mode-collapse regarding the length
distribution. As mentioned in chapter 3, mode-collapse is the result when we have
a GAN that generates same samples for different input noise vectors. The length
distribution does however not suffice to assure whether the drag and drop sequences
follows similar trends in temporal correlation between the data-points.

Figure 5.3.2 shows the average delta distance to the target location for both synthetic
datasets. We can observe that the synthetic dataset representing the young population
follows a similar pattern in decreasing delta distance as time increases. This indicates
that the synthetic dataset carries temporal correlation within each sample, similar
to the real dataset. This result is important because the temporal correlation of our
data-points carries the information about the actual drag and drop sequences. We
can also observe that the average starting distance for the younger synthetic dataset
is closer to the target location than that of the real dataset. This implies that the
younger population GAN generates samples where the starting and drop location are
closer than that of the real dataset. The reason behind this can be that the min-max
generator, discussed in 3.4.2, has not fully learned the per-sample ranges of the real
dataset. The elderly population synthetic data shows similar patterns regarding the
decreasing delta distance but a slight increase in convergence to the target location.
The most likely explanation for this is the over representation of longer sequences
within the synthetic dataset, compared to the real dataset. This implies that the elderly

49

CHAPTER 5. RESULT AND DISCUSSION

synthetic dataset may contain a slight bias towards longer sequences which can affect
the possible use-cases where we might use our synthetic data. In both the elderly and
younger synthetic datasets, a small increase and decrease of the average delta distance
appears in the beginning of the sequence. This behaviour appears for both GANs,
which are trained independently. The reason behind this behaviour is unclear, but
is most likely a architecture problem as the result appears for both GANs. Thus, a
possible solution is to experiment with the settings within the GAN, e.g. adding more
complexity to the architecture by increasing the number of layers and units within each
model.

The synthetic datasets across both the young and elderly population shows signs
of both diversity and uniqueness when depicting the synthetic samples nearest
neighbours. None of the synthetic samples depicted in 5.3.3 and 5.3.4 has an identical
neighbour. This is important because we can use the synthetic dataset to augment an
existing dataset with limited samples without introducing duplicate entries.

5.5.2 Performance of the Synthetic Data

This section aims to answer the research question RQ2, which asks the following: How
well does the synthetic UI interaction perform compared to real user interaction
data?.

As expected, the external RNN-model trained on real data outperforms the synthetic
data across all metrics, on average. This result complies with prior research that use a
similar approach when evaluating the quality of their synthetic data [6, 27, 41], which
is to expect because the quality of our real dataset contains less noise than that of the
synthetic dataset. The difference in performance across all metrics is however small,
which further highlights that the quality of our synthetic data, generated by both GANs,
follows similar levels to that of the real UI interactions. It is worth mentioning that
the model architecture used for this particular classification task may not be the most
optimal solution, and improvements regarding hyperparameter tuning and adding
more complexity to the model could possibly yield better performances. However, we
still believe that the same trend should emerge despite possible model improvements,
where the real dataset outperforms the synthetic data, but with an possible slimmer
margin regarding the performance results.

How the RNN model learns to distinguish between the elderly and younger drag and
drops is also an important aspect to consider when making assessment regarding
the quality of our synthetic. We believe that there are 2 central patterns within the
drag and drop sequence that may affect the result of our RNN-model. First, we can
observe that the average length differences between the elderly and young populations
samples, as depicted in table 5.3.1, are quite different, which may affect how the RNN-
model learns to distinguish between the elderly and young populations. The second
possibility is that the model learns to distinguish between the samples by learning
different patterns in temporal correlations of the captured coordinates. Recall that

50

CHAPTER 5. RESULT AND DISCUSSION

we capture coordinates, starting when the user begins the drag operation and finish
when the square is dropped in the target location. During this time period, the user
may possibly drop the square outside the target location or hover the square around
the target location before dropping. It is observed that the elderly population tends to
focus more on precision than speed, which is the opposite for the younger population
[32, 38]. Thus, we believe that the elderly drag and drop sequences contains more
clustering of similar coordinates towards the end of the sequence, mainly because the
elderly aims to drop the square precisely in the middle of the drop location. This
can also be partially observed figure 5.3.4 and figure 5.3.3, where we see the nearest
neighbours of our synthetic samples. The elderly samples, both real and synthetic, tend
to plateau around 0 for a longer time than for the younger samples, which implicitly
means that the square is hovering of the target location for a longer time.

The fact that the GANs produced synthetic data which resulted in a performance level
close to that of the real data further shows the value of using GANs for certain user
interaction tasks. This is particularly promising in tasks where the collection of user
data is limited, costly or difficult to collect, such as with certain hard-to-access user
groups.

Although we showed that the synthetic data yields similar results to that of the real
dataset when used for a simple classification task, there is still uncertainty regarding
how well the synthetic data performs in other more complex tasks, which is out of
scope in this thesis but should definitely be examined to further validate the possible
use-cases of the synthetic data.

5.5.3 Threats to Validity
There are several parts within the project that may affect the validity of our gathered
results. We discuss 3 types of validity threats, internal validity, external validity and
construct validity. Internal validity is the degree to which the result of our study
is caused by the observed independent variables, and not the possible flaws in our
experimental design. External validity refers to how general the result of our study
is, and if the result applies to other settings. Construct validity refers to whether one
can justifiably claim whether the measurement used in the study reflects the concepts
which they claim to measure.

Internal Validity

The study uses an external RNN to quantitatively measure the performance of our
synthetic data compared to the real data when used for a classification task. The
attained results indicates that the synthetic data slightly reduces the performance of
our RNN compared when using the real dataset. Although we use a cross-validator to
estimate how themodel would perform in practice, the optimizer used to train theRNN
is of stochastic nature, meaning that the granted result may vary based on how good
the model converge towards the global minima. Furthermore, we see in figure 5.4.1

51

CHAPTER 5. RESULT AND DISCUSSION

that some iterations within the cross-validator produces quite large variations across
both the recall and precision scores, which can be caused by the used optimizer and
not the quality of our data.

External Validity

The gathered data resembles 2 groups, the elderly and the younger population. This
separation of groups is only based on the age factor which is most likely not enough
to generalize across all possible subgroups of people. For instance, the dataset do
not consider whether the user has any medical conditions that may affect how they
interact with an UI. Thus, our results should not be interpret as a grand solution for all
possible user groups. Also, the generated synthetic data may not capture all variations
of the user interaction data and may not fully apply to real-world scenarios. Another
important consideration is that our result is solely based of a single UI gesture, namely
the drag and drop, which is one of many existing gestures one could experiment with.
The setting used to collect user data does also not reflect a real-world scenario, where
we randomly displace the drag and drops in each iteration within the UI.

Construct Validity

We use the delta distance to the target location when validating the temporal
correlation of the samples. This only displays the magnitude of the distance at each
time step, but not the direction of our drag sequence. Hence, we can only assure
the quality of the temporal correlation but not the diversity regarding the direction
of our drag and drop sequence. Hence, the synthetic samples may include a majority
of drag and drop sequences that follows a similar pattern, e.g. only upward dragging,
but differs in the start and drop location. Furthermore, we calculated the nearest-
neighbours to determine whether the synthetic data contains diversity and uniqueness.
Only three samples within the synthetic datasets where depicted, which may not be
enough to claim diversity and uniqueness when considering the complete dataset.
Another aspect to consider is how we evaluate the performance of our synthetic data.
The classificationmodelmay only learn the length distribution during training and not
consider the actual temporal correlation within each sample when classifying whether
a drag and drop sequence comes from the elderly or young population. This may
imply that that, even if our samples contains illogical sequences, the model may still
distinguish the samples based on its length. Also, the use of a classification task
may not be sufficient to assert that the performance of synthetic data applies to other
problem settings, e.g. predictive modelling where we might want to predict where the
user might drop the the square, given a subsequent of the complete operation.

5.5.4 Limitations
One limitation of this project is that only a single UI gesture, the drag and drop,
were used for analysis. Using a single UI gesture minimized the time needed for

52

CHAPTER 5. RESULT AND DISCUSSION

the participant to perform the experiment. Suppose a more comprehensive set of
UI gestures were to be tested. In that case, data collection becomes more tedious
and time-consuming because fewer people would likely participate in the experiment.
Additionally, the scenario used to capture the drag-and-drop sequences does not
reflect a real-world scenario where one might test a proposed UI design on multiple
participants. Furthermore, we only utilize a single GAN architecture, namely the
doppelGANger architecture. Testing other GAN architectures [6, 41] might provide
better results within this problem set. Furthermore, we did not incorporate the
metadata of each drag-and-drop sample when training the GAN network. This is a
powerful feature within the doppelGANgermodel that can be used to characterize each
sample, e.g., whether the sample was performed by a right or left-handed person or the
particular age of the participant.

Another major limitation was the limited hardware resources used to train the GAN
network. Even with our small dataset, training the GAN took approximately 2 hours.
This makes tuning the hyperparameters within the GAN tedious and limited, which
may lead to a model that may produce less optimal results.

Moreover, the study focuses on user interactions that can easily be transferred to a time
series representation of theUI interaction, which can be used for training the GANs. In
general, other types of UI interactions or problem settingsmay not be as easily adapted
to this particular approach.

53

Chapter 6

Conclusions and Future Work

This thesis aims to bridge the gaps between the use of GANs in the domain of usability
testing, where we mainly focus on the drag-and-drop operation. Moreover, the
research aims to provide valuable insights regarding the possibilities and limitations
of modeling synthetic user interactions within a UI.

The results of our study indicate, both qualitatively and quantitatively, that using the
doppelGANger architecture for the purpose of generating UI gesture data, provides
high-quality synthetic data. Both generators of the elderly and younger population
have not only learned to capture the statistical properties within the original dataset
but also produce samples that have diversity and follow similar temporal correlation
patterns as the real drag-and-drop sequences. Furthermore, we have shown that the
synthetic data is highly competitive, compared to the real dataset, when used in a
classification task where an RNN model is trained to distinguish between the elderly
and younger drag-and-drop sequences.

By demonstrating that the GAN models can generate high-quality synthetic data
which closely mimics real user interactions of the drag-and-drop operation, our
study offers new possibilities for enhancing current usability testing, where the data
collection might be limited. Not only does this open up new ways for creating
diverse and statistically consistent data for training RNN models in a classification
task, but it also has implications for designing and developing more user-friendly
interfaces. For instance, the ability to accurately model and generate different user
interaction patterns, such as those of elderly and younger populations, can help
designers anticipate user behaviors and needs, ultimately leading to the creation of
more inclusive and accessible software systems. This could improve the way usability
testing is conducted in the future, where less time has to be spent on extensive data
collection, but also mitigate potential hurdles when certain user groups may be hard
to access.

54

CHAPTER 6. CONCLUSIONS AND FUTUREWORK

6.1 Future Work
This thesis has only graced the potential of generating synthetic user interaction
data. Including a wider set of UI gestures, such as pinching and tapping, would
provide valuable insights regarding the strengths and weaknesses of GANs within
these particular settings, which further generalizes the results. Furthermore, it would
be interesting to investigate whether a single GAN model could be used to model
multiple user groups simultaneously and achieve high-quality synthetic data. This
would provide a centralized solutionwhich becomesmoremanageable tomaintain and
also easier to deploy in practice. Another interesting area is the choice of generative
model. One could perform a comparative study between multiple GAN architectures,
such as TimeGAN[41] and RCGAN[6] to further strengthen the potential options and
benefits of different GAN architectures within this specific domain.

55

Bibliography

[1] Agarap, Abien Fred. “Deep learning using rectified linear units (relu)”. In: arXiv
preprint arXiv:1803.08375 (2018).

[2] Arjovsky,Martin, Chintala, Soumith, and Bottou, Léon.Wasserstein GAN. 2017.
arXiv: 1701.07875 [stat.ML].

[3] Chollet, François et al. Keras. https://keras.io. 2015.

[4] Dehlinger, Josh and Dixon, Jeremy. “Mobile application software engineering:
Challenges and research directions”. In: Workshop on mobile software
engineering. Vol. 2. 2011, pp. 29–32.

[5] Docker. en. May 2023. url: https://docs.docker.com/get-started/ (visited
on 05/12/2023).

[6] Esteban, Cristóbal, Hyland, Stephanie L., and Rätsch, Gunnar. Real-valued
(Medical) Time Series Generation with Recurrent Conditional GANs. 2017.
arXiv: 1706.02633 [stat.ML].

[7] Esteban, Cristóbal, Hyland, Stephanie L., and Rätsch, Gunnar. Real-valued
(Medical) Time Series Generation with Recurrent Conditional GANs. 2017.
arXiv: 1706.02633 [stat.ML].

[8] General Data Protection Regulation (GDPR) – Official Legal Text. url: https:
//gdpr-info.eu/ (visited on 05/31/2023).

[9] GitHub - gretelai/gretel-synthetics: Synthetic data generators for structured
and unstructured text, featuring differentially private learning. url: https://
github.com/gretelai/gretel-synthetics (visited on 05/12/2023).

[10] Global: number of smartphone users 2013-2028 | Statista. url: https://www.
statista.com/forecasts/1143723/smartphone-users-in-the-world (visited
on 05/30/2023).

[11] Goodfellow, Ian. NIPS 2016 Tutorial: Generative Adversarial Networks. 2017.
arXiv: 1701.00160 [cs.LG].

[12] Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[13] Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-
Farley, David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative
Adversarial Networks. 2014. arXiv: 1406.2661 [stat.ML].

56

https://arxiv.org/abs/1701.07875
https://keras.io
https://docs.docker.com/get-started/
https://arxiv.org/abs/1706.02633
https://arxiv.org/abs/1706.02633
https://gdpr-info.eu/
https://gdpr-info.eu/
https://github.com/gretelai/gretel-synthetics
https://github.com/gretelai/gretel-synthetics
https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
https://arxiv.org/abs/1701.00160
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1406.2661

BIBLIOGRAPHY

[14] Gulrajani, Ishaan, Ahmed, Faruk, Arjovsky, Martin, Dumoulin, Vincent, and
Courville, Aaron. Improved Training of Wasserstein GANs. 2017. arXiv: 1704.
00028 [cs.LG].

[15] Harshvardhan, GM, Gourisaria, Mahendra Kumar, Pandey, Manjusha, and
Rautaray, Siddharth Swarup. “A comprehensive survey and analysis of
generative models in machine learning”. In: Computer Science Review 38
(2020), p. 100285.

[16] Hochreiter, Sepp and Schmidhuber, Jürgen. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[17] Human Interface Guidelines | Apple Developer Documentation. url: https :
//developer.apple.com/design/human-interface-guidelines (visited on
05/30/2023).

[18] Janocha, Katarzyna and Czarnecki, Wojciech Marian. “On loss functions for
deep neural networks in classification”. In: arXiv preprint arXiv:1702.05659
(2017).

[19] Jobin, Anna, Ienca, Marcello, and Vayena, Effy. “The global landscape of AI
ethics guidelines”. In: Nature Machine Intelligence 1.9 (2019), pp. 389–399.

[20] Jordon, James, Szpruch, Lukasz, Houssiau, Florimond, Bottarelli, Mirko,
Cherubin, Giovanni, Maple, Carsten, Cohen, Samuel N., and Weller, Adrian.
Synthetic Data – what, why and how? 2022. arXiv: 2205.03257 [cs.LG].

[21] Kaasila, Jouko, Ferreira, Denzil, Kostakos, Vassilis, andOjala, Timo. “Testdroid:
automated remote UI testing on Android”. In: Proceedings of the 11th
International Conference on Mobile and Ubiquitous Multimedia. 2012, pp. 1–
4.

[22] Kingma, Diederik P. and Ba, Jimmy. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG].

[23] Kobayashi, Masatomo, Hiyama, Atsushi, Miura, Takahiro, Asakawa, Chieko,
Hirose, Michitaka, and Ifukube, Tohru. “Elderly User Evaluation of Mobile
Touchscreen Interactions”. In: Human-Computer Interaction – INTERACT
2011. Ed. by Pedro Campos, Nicholas Graham, Joaquim Jorge, Nuno Nunes,
Philippe Palanque, and Marco Winckler. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 83–99. isbn: 978-3-642-23774-4.

[24] Lawrence, Jeannette. Introduction to neural networks. California Scientific
Software, 1993.

[25] Leach, Paul J., Salz, Rich, and Mealling, Michael H. A Universally Unique
IDentifier (UUID) URN Namespace. RFC 4122. July 2005. doi: 10 . 17487 /
RFC4122. url: https://www.rfc-editor.org/info/rfc4122.

[26] Leporini, Barbara, Buzzi, Maria Claudia, and Buzzi, Marina. “Interacting
with mobile devices via VoiceOver: usability and accessibility issues”. In:
Proceedings of the 24th Australian computer-human interaction conference.
2012, pp. 339–348.

57

https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1704.00028
https://developer.apple.com/design/human-interface-guidelines
https://developer.apple.com/design/human-interface-guidelines
https://arxiv.org/abs/2205.03257
https://arxiv.org/abs/1412.6980
https://doi.org/10.17487/RFC4122
https://doi.org/10.17487/RFC4122
https://www.rfc-editor.org/info/rfc4122

BIBLIOGRAPHY

[27] Lin, Zinan, Jain, Alankar, Wang, Chen, Fanti, Giulia, and Sekar, Vyas. “Using
GANs for Sharing Networked Time Series Data”. In: Proceedings of the ACM
Internet Measurement Conference. ACM, Oct. 2020. doi: 10.1145/3419394.
3423643. url: https://doi.org/10.1145%5C%2F3419394.3423643.

[28] Macias, Elsa, Suarez, Alvaro, and Lloret, Jaime. “Mobile sensing systems”. In:
Sensors 13.12 (2013), pp. 17292–17321.

[29] Material Design for Android | Android Developers. url: https://developer.
android . com / develop / ui / views / theming / look - and - feel (visited on
05/30/2023).

[30] McKinney, Wes. “Data Structures for Statistical Computing in Python”. In:
Proceedings of the 9th Python in Science Conference. Ed. by Stéfan van derWalt
and Jarrod Millman. 2010, pp. 51–56.

[31] Nayebi, Fatih, Desharnais, Jean-Marc, and Abran, Alain. “The state of the
art of mobile application usability evaluation”. In: 2012 25th IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE). 2012, pp. 1–4.
doi: 10.1109/CCECE.2012.6334930.

[32] Nurgalieva, Leysan, Jara Laconich, Juan José, Baez, Marcos, Casati, Fabio,
and Marchese, Maurizio. “A Systematic Literature Review of Research-Derived
Touchscreen Design Guidelines for Older Adults”. In: IEEE Access 7 (2019),
pp. 22035–22058. doi: 10.1109/ACCESS.2019.2898467.

[33] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. “Scikit-learn:
Machine Learning in Python”. In: Journal of Machine Learning Research 12
(2011), pp. 2825–2830.

[34] Ruiz, Jaime, Li, Yang, and Lank, Edward. “User-defined motion gestures for
mobile interaction”. In: Proceedings of the SIGCHI conference on human
factors in computing systems. 2011, pp. 197–206.

[35] Sherstinsky, Alex. “Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network”. In: Physica D: Nonlinear Phenomena
404 (2020), p. 132306.

[36] Singh, Dalwinder and Singh, Birmohan. “Investigating the impact of data
normalization on classification performance”. In: Applied Soft Computing 97
(2020), p. 105524.

[37] Tavenard, Romain. An introduction to Dynamic Time Warping. https : / /
rtavenar.github.io/blog/dtw.html. 2021.

58

https://doi.org/10.1145/3419394.3423643
https://doi.org/10.1145/3419394.3423643
https://doi.org/10.1145%5C%2F3419394.3423643
https://developer.android.com/develop/ui/views/theming/look-and-feel
https://developer.android.com/develop/ui/views/theming/look-and-feel
https://doi.org/10.1109/CCECE.2012.6334930
https://doi.org/10.1109/ACCESS.2019.2898467
https://rtavenar.github.io/blog/dtw.html
https://rtavenar.github.io/blog/dtw.html

BIBLIOGRAPHY

[38] Tsai, Tsai-Hsuan, Tseng, Kevin C., and Chang, Yung-Sheng. “Testing the
usability of smartphone surface gestures on different sizes of smartphones by
different age groups of users”. In: Computers in Human Behavior 75 (2017),
pp. 103–116. issn: 0747-5632. doi: https://doi.org/10.1016/j.chb.2017.
05 . 013. url: https : / / www . sciencedirect . com / science / article / pii /
S0747563217303254.

[39] wannesm, khendrickx, Yurtman, Aras, Robberechts, Pieter, Vohl,
Dany, Ma, Eric, Verbruggen, Gust, Rossi, Marco, Shaikh, Mazhar, Yasirroni,
Muhammad, Todd, Zieliński, Wojciech, Craenendonck, Toon Van, and Wu, Sai.
wannesm/dtaidistance: v2.3.5. Version v2.3.5. Jan. 2022. doi: 10.5281/zenodo.
5901139. url: https://doi.org/10.5281/zenodo.5901139.

[40] Wobbrock, Jacob O., Morris, Meredith Ringel, and Wilson, Andrew D. “User-
Defined Gestures for Surface Computing”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’09. Boston,
MA, USA: Association for Computing Machinery, 2009, pp. 1083–1092. isbn:
9781605582467. doi: 10.1145/1518701.1518866. url: https://doi.org/10.
1145/1518701.1518866.

[41] Yoon, Jinsung, Jarrett, Daniel, and Schaar, Mihaela van der. “Time-series
Generative Adversarial Networks”. In: Advances in Neural Information
Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019.
url: https://proceedings.neurips.cc/paper_files/paper/2019/file/
c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf.

[42] Zhang, Dongsong and Adipat, Boonlit. “Challenges, methodologies, and issues
in the usability testing of mobile applications”. In: International journal of
human-computer interaction 18.3 (2005), pp. 293–308.

59

https://doi.org/https://doi.org/10.1016/j.chb.2017.05.013
https://doi.org/https://doi.org/10.1016/j.chb.2017.05.013
https://www.sciencedirect.com/science/article/pii/S0747563217303254
https://www.sciencedirect.com/science/article/pii/S0747563217303254
https://doi.org/10.5281/zenodo.5901139
https://doi.org/10.5281/zenodo.5901139
https://doi.org/10.5281/zenodo.5901139
https://doi.org/10.1145/1518701.1518866
https://doi.org/10.1145/1518701.1518866
https://doi.org/10.1145/1518701.1518866
https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf

Appendix - Contents

A Appendix 61

60

Appendix A

Appendix

61

APPENDIX A. APPENDIX

Settings Elderly population GAN Young population GAN
Epochs 25000 30000

Batch size 215 262
Max sequence 410 266

batch generation 1 1
Discriminator Rounds 2 2
Generator Rounds 1 1
noise vector size

(Attribute generator)
10 10

noise vector size
(Time series generator)

10 10

MLP layers
(Attribute generator)

3 3

MLP units
(Attribute generator)

100 100

RNN (LSTM) layers
(Time series generator)

2 2

RNN (LSTM) units
(Time series generator)

150 150

MLP layers
(Discriminator)

5 5

MLP units
(Discriminator)

200 200

MLP layers
(Auxiliary discriminator)

5 5

MLP units
(Auxiliary discriminator)

200 200

Loss function Wasserstein-1 Wasserstein-1
Optimizer

(Both discriminators)
Adam Adam

Learning rate (Generator) 0.0005 0.0005
Learning rate (Discriminator) 0.0005 0.0003

Table A.0.1: GAN architectural setting for both younger and elderly population.
Various parameterswhich has not been altered are not included in the table and instead
uses the baseline settings provided in [9]

62

APPENDIX A. APPENDIX

Figure A.0.1: Model used for the TSTR

63

	Introduction
	Background
	Problem Statement
	Thesis Objective
	Goals
	Ethics and Sustainability
	Methodology
	Delimitations
	Outline

	Background and Related Work
	UI Interactions
	Neural Networks
	Recurrent Neural Networks

	Generative models
	Generative Adversarial Networks
	Wasserstein Distance

	Related Work

	Experimental Design
	Research Question
	Experimental Overview
	Data Collection
	User Task
	Collected Data

	Synthetic Data Generation
	Pre-processing
	GAN Architecture
	GAN Training
	Post-Processing

	Evaluating the Synthetic Data
	RQ1
	RQ2

	Implementation
	Overview of Implementation
	Data Collection
	Mobile Application
	Data Storage

	Synthetic Data Generation
	Dataset
	Pre-Processing
	GAN Model
	Post-Processing
	Evaluating the Synthetic Data

	Code Repository

	Result and Discussion
	Data Collection
	GAN Parameters
	RQ1: Fidelity of the Synthetic Data
	RQ2: Performance Evaluation
	Discussion
	Fidelity of the Synthetic Data
	Performance of the Synthetic Data
	Threats to Validity
	Limitations

	Conclusions and Future Work
	Future Work

	References
	Appendix

