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1. Introduction

Coagulation-fragmentation (CF) equations have been used to model many physical and biological
phenomena [1, 2]. In particular, when combined with transport terms, these equations can be used
to model the population dynamics of oceanic phytoplankton [3–5]. Setting such models in the space
of Radon measures allows for the unified study of both discrete and continuous structures. Not only
are the classical discrete and continuous CF equations special cases of the measure valued model (as
shown in [6]), but this setting allows for a mixing of the two structures, which has become of interest
in particular applications [7, 8].

With the above applications in mind, numerical schemes to solve CF equations are of great
importance to researchers. In particular, finite difference methods offer numerical schemes which are
easy to implement and approximate the solution with a high order of accuracy. The latter benefit is
especially important in the study of stability and optimal control of such equations.

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023525


11806

The purpose of this article is to make improvements on two of the three first-order schemes
presented in [9], namely the fully explicit and semi-implicit schemes. These schemes are shown to
have certain advantages and disadvantages as discussed in the aforementioned study. In particular, the
fully explicit scheme has the qualitative property of conservation of mass through coagulation. On the
other hand, the semi-implicit scheme has a more relaxed Courant–Friedrichs–Lewy (CFL) condition,
which does not depend on the initial condition. We have decided not to attempt to improve the third
scheme presented in [9] as there does not seem to be a significant advantage of the named
conservation law scheme to outweigh the drastic computational cost. The main improvement here is
to lift-up these two first-order schemes to second-order ones on the space of Radon measures;
however, as this state space contains singular elements (including point measures), the improvement
of these schemes must be handled with care. As shown in [10], discontinuities and singularities in the
solution can cause drastic changes in not only the order of convergence of the scheme, but also in the
behavior of the scheme. To address these issues, we turn to a high resolution scheme studied with
classical structured population models (i.e. without coagulation-fragmentation) in [11–13]. This
scheme makes use of a minmod flux limiter to control any oscillatory behavior of the scheme caused
by irregularities. With this new flux, we show that it is possible for second order convergence rates to
be obtained for continuous density solutions. However, as the solutions become more irregular, one
should expect the convergence rate to decline. Such a phenomenon is demonstrated in [10, 13], and
we direct the reader to these manuscripts for more discussion.

The layout of the paper is as follows. In Section 2, we present the notation and preliminary results
about the model and state space used throughout the paper. In Section 3, we describe the model
and state all assumptions imposed on the model parameters. In Section 4, we present the numerical
schemes, their CFL conditions, and state the main theorem of the paper. In Section 5, we test the
convergence rate of the schemes against well-known examples. In Section 6, we provide a conclusion
and in the Appendix (Section 7) we provide proofs for some of our results.

2. Notation

We make use of standard notations for function spaces. The most common examples of these are
C1(R+) for the space of real valued continuously differentable functions and W1,∞(R+) for the usual
Sobelov space. The space of Radon measures will be denoted withM(R+), withM+(R+) representing
its positive cone. This space will be equipped with the Bounded-Lipschitz (BL) norm given by

‖µ‖BL := sup
‖φ‖W1,∞≤1

{∫
R+

φ(x)µ(dx) : φ ∈ W1,∞(R+)
}
.

Another norm of interest to this space is the well studied Total Variation (TV) norm given by

‖ν‖TV = |ν|(R+) = sup
‖ f ‖∞≤1

{∫
R+

f (x)ν(dx) : f ∈ Cc(R+)
}
.

For more information about these particular norms and their relationship we direct the reader to [14,15].
For lucidity, we use operator notation in place of integration when we believe it necessary, namely

(µ, f ) :=
∫

A
f (x)µ(dx),
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where the set A is the support of the measure µ. Finally, we denote the minmod function by mm(a, b)
and use the following definition

mm(a, b) :=
sign(a) + sign(b)

2
max(|a|, |b|).

3. Model and assumptions

The model of interest is the size-structured coagulation fragmentation model given by
∂tµ + ∂x(g(t, µ)µ) + d(t, µ)µ = K[µ] + F[µ], (t, x) ∈ (0,T ) × (0,∞),

g(t, µ)(0)Ddxµ(0) =

∫
R+

β(t, µ)(y)µ(dy), t ∈ [0,T ],

µ(0) = µ0 ∈ M
+(R+),

, (3.1)

where µ(t) ∈ M+(R+) represents individuals’ size distribution at time t and the functions g, d, β are
their growth, death, and reproduction rate, respectively. The coagulation and fragmentation processes
of a population distributed according to µ ∈ M+(R+) are modeled by the measures K[µ] and F[µ] given

(K[µ], φ) =
1
2

∫
R+

∫
R+

κ(y, x)φ(x + y) µ(dx) µ(dy) −
∫
R+

∫
R+

κ(y, x)φ(x) µ(dy) µ(dx)

and
(F[µ], φ) =

∫
R+

(b(y, ·), φ)a(y) µ(dy) −
∫
R+

a(y)φ(y)µ(dy)

for any test function φ. Here, κ(x, y) is the rate at which individuals of size x coalesce with individuals
of size y, a(y) is the global fragmentation rate of individuals of size y, and b(y, ·) is a measure supported
on [0, y] such that b(y, A) represents the probability a particle of size y fragments to a particle with size
in the Borel set A.

Definition 3.1. Given T ≥ 0, we say a function µ ∈ C([0,T ],M+(R+)) is a weak solution to (3.1) if for
all φ ∈ (C1 ∩W1,∞)([0,T ] × R+) and for all t ∈ [0,T ], the following holds:∫ ∞

0
φ(t, x)µt(dx) −

∫ ∞

0
φ(0, x)µ0(dx) =∫ t

0

∫ ∞

0

[
∂tφ(s, x) + g(s, µs)(x)∂xφ(s, x) − d(s, µs)(x)φ(s, x)

]
µs(dx)ds

+

∫ t

0
(K[µs] + F[µs], φ(s, ·)) ds +

∫ t

0

∫ ∞

0
φ(s, 0)β(s, µs)(x)µs(dx)ds.

(3.2)

For the numerical scheme, we will restrict ourselves to a finite domain, [0, xmax]. Thus, we impose
the following assumptions on the growth, death and birth functions:

(A1) For any R > 0, there exists LR > 0 such that for all ‖µi‖TV ≤ R and ti ∈ [0,∞) (i = 1, 2) the
following hold for f = g, d, β,

‖ f (t1, µ1) − f (t2, µ2)‖∞ ≤ LR(|t1 − t2| + ‖µ1 − µ2‖BL),
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(A2) There exists ζ > 0 such that for all T > 0,

sup
t∈[0,T ]

sup
µ∈M+(R+)

‖g(t, µ)‖W1,∞ + ‖d(t, µ)‖W1,∞ + ‖β(t, µ)‖W1,∞ < ζ,

(A3) For all (t, µ) ∈ [0,∞) ×M+(R+),

g(t, µ)(0) > 0 and g(t, µ)(xmax) = 0

for some large xmax > 0.

We assume that the coagulation kernel κ satisfies the following assumption:

(K1) κ is symmetric, nonnegative, bounded by a constant Cκ, and globally Lipschitz with Lipschitz
constant Lκ.

(K2) κ(x, y) = 0 whenever x + y > xmax.

We assume that the fragmentation kernel satisfies the following assumptions:

(F1) a ∈ W1,∞(R+) is non-negative,
(F2) for any y ≥ 0, b(y, dx) is a measure such that

(i) b(y, dx) is non-negative and supported in [0, y], and there exist a Cb > 0 such that b(y,R+) ≤
Cb for all y > 0,

(ii) there exists Lb such that for any y, ȳ ≥ 0,

‖b(y, ·) − b(ȳ, ·)‖BL ≤ Lb|y − ȳ|

(iii) for any y ≥ 0,

(b(y, dx), x) =

∫ y

0
x b(y, dx) = y.

The existence and uniqueness of mass conserving solutions of model (3.1) under these assumptions
were established in [6].

4. Numerical methods

We adopt the numerical discretization presented in [6]. For some fixed mesh sizes ∆x,∆t > 0, we
discretize the size domain [0, xmax] with the cells

Λ∆x
j := [( j −

1
2

)∆x, ( j +
1
2

)∆x), for j = 1, . . . , J,

and
Λ∆x

0 := [0,
∆x
2

).

We denote the midpoints of these grids by x j. The initial condition µ0 ∈ M
+(R+) will be approximated

by a combination of Dirac measures

µ∆x
0 =

J∑
j=0

m0
jδx j , where m0

j := µ0(Λ∆x
j ).
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We first approximate the model coefficients κ, a, b as follows. For the physical ingredients, we
define

a∆x
i =

1
∆x

∫
Λ∆x

i

a(y)dy, κ∆x
i, j =

1
∆x2

∫
Λ∆x

i ×Λ∆x
j

κ(x, y)dxdy

for i, j ≥ 1, and

a∆x
0 =

2
∆x

∫
Λ∆x

0

a(y)dy, κ∆x
0,0 =

4
∆x2

∫
Λ∆x

0 ×Λ∆x
0

κ(x, y)dxdy

(with the natural modifications for κ∆x
0, j and κ∆x

i,0 , i ≥ 1). We then let a∆x ∈ W1,∞(R+) and
κ∆x ∈ W1,∞(R+ × R+) be the linear interpolation of the a∆x

i and κ∆x
i, j , respectively. Finally, we define the

measure b∆x(x j, ·) ∈ M+(∆xN) by

b∆x(x j, ·) =
∑
i≤ j

b(x j,Λ
∆x
i )δx j =:

∑
i≤ j

b∆x
j,i δx j

and then b∆x(x, ·) ∈ M+(∆xN0) for x ≥ 0 as the linear interpolate between the b∆x(x j, ·). When the
context is clear, we omit the ∆x from the notation above.

We make use of these approximations to combine the high-resolution scheme presented in [13]
with the fully explicit and semi-implicit schemes presented in [9]. Together, these schemes give us the
numerical scheme

mk+1
j = mk

j −
∆t
∆x

( f k
j+ 1

2
− f k

j− 1
2
) − ∆tdk

jm
k
j + ∆t

(
C j,k + F j,k

)
, j = 1, .., J,

gk
0mk

0 = ∆x
J∑

j=1

∗βk
jm

k
j := ∆x

3
2
βk

1mk
1 +

1
2
βk

Jmk
J +

J−1∑
j=2

βk
jm

k
j

 , (4.1)

where the flux term is given by

f k
j+ 1

2
=

gk
jm

k
j +

1
2

(gk
j+1 − gk

j)m
k
j +

1
2

gk
j mm(∆+mk

j,∆−m
k
j) j = 2, 3, . . . , J − 2

gk
jm

k
j j = 0, 1, J − 1, J

, (4.2)

the fragmentation term, F j,k, is given by

F j,k :=
J∑

i= j

bi, jaimk
i − a jmk

j, (4.3)

and the coagulation term, C j, is either given by an explicit discretization as

C
exp
j,k :=

1
2

j−1∑
i=1

κi, j−imk
i m

k
j−i −

J∑
i=1

κi, jmk
i m

k
j, (4.4)

or by an implicit one as

C
imp
j,k :=

1
2

j−1∑
i=1

κi, j−imk+1
i mk

j−i −

J∑
i=1

κi, jmk
i m

k+1
j . (4.5)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11805–11820.



11810

As discussed in [9], the explicit scheme which uses (4.4) to approximate the coagulation term
and the semi-implicit scheme which instead uses (4.5) to approximate the coagulation term behave
differently with respect to the mass conservation and have different Courant–Friedrichs–Lewy (CFL)
conditions. The assumed CFL condition for the schemes are

Explicit: ∆t
(
Cκ‖µ0‖TV exp((ζ + CbCa)T ) + Ca max{1,Cb} + (1 + 3

2∆x )ζ
)
≤ 1

Semi-Implicit: ζ̄(2 + 3
2∆x )∆t ≤ 1,

(4.6)

where ζ̄ = max{ζ, ‖a‖W1,∞}, Ca = ‖a‖∞. The CFL conditions above are similar to those used in [9], but
are adjusted due to the flux limiter term as in [13]. It is clear that the semi-implicit scheme has a less
restrictive and simpler CFL condition than the explicit scheme. In particular, the CFL condition of the
semi-implicit scheme is independent on the initial condition, unlike its counterpart. The trade off for
this is a loss of qualitative behavior of the scheme in the sense of mass conservation. Indeed as shown
in [9], when β = d = g = a = 0, the semi-implicit coagulation term does not conserve mass, whereas
the explicit term does. As shown in the appendix, this loss is controlled by the time step size, ∆t.

It is useful to define the following coefficients:

Ak
j =



gk
j j = 1, J,

1
2

(
gk

j+1 + gk
j + gk

j
mm(∆+mk

j ,∆−mk
j)

∆−mk
j

)
j = 2,

1
2

(
gk

j+1 + gk
j + gk

j
mm(∆+mk

j ,∆−mk
j)

∆−mk
j

− gk
j−1

mm(∆−mk
j ,∆−mk

j−1)

∆−mk
j

)
j = 3, . . . , J − 2,

1
2

(
2gk

j − gk
j−1

mm(∆−mk
j ,∆−mk

j−1)

∆−mk
j

)
j = J − 1,

and

Bk
j =


∆−gk

j j = 1, J,
1
2∆+gk

j j = 2,
1
2 (∆+gk

j + ∆−gk
j) j = 3, . . . , J − 2,

1
2∆−gk

j j = J − 1.

.

Notice, |Ak
j | ≤

3∆t
2∆xζ and Ak

j − Bk
j ≥ 0 as

2(Ak
j − Bk

j) =



2gk
j−1 j = 1, J,

gk
j

(
2 +

mm(∆+mk
j ,∆−mk

j)

∆−mk
j

)
j = 2,

gk
j

(
1 +

mm(∆+mk
j ,∆−mk

j)

∆−mk
j

)
+ gk

j−1

(
1 −

mm(∆−mk
j ,∆−mk

j−1)

∆−mk
j

)
j = 3, . . . , J − 2,

gn
j + gn

j−1

(
1 −

mm(∆−mn
j ,∆−mn

j−1)

∆−mn
j

)
j = J − 1.

.

Scheme (4.1) can then be rewritten as

mk+1
j = (1 −

∆t
∆x

Ak
j − ∆t(dk

j + a j))mk
j +

∆t
∆x

(Ak
j − Bk

j)m
k
j−1

+ ∆t
J∑

i= j

bi, jaimk
i + ∆t.C j,k

gk
0mk

0 = ∆x
J∑

j=1

∗βk
jm

k
j .

. (4.7)
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Depending on the choice of coagulation term, this formulation leads to either

mk+1
j = (1 −

∆t
∆x

Ak
j − ∆t(dk

j + a j) − ∆t
J∑

i=1

κi, jmk
i )m

k
j +

∆t
∆x

(Ak
j − Bk

j)m
k
j−1

+ ∆t
J∑

i= j

bi, jaimk
i +

∆t
2

j−1∑
i=1

κi, j−imk
i m

k
j−i

gk
0mk

0 = ∆x
J∑

j=1

∗βk
jm

k
j

, (4.8)

for the explicit term, Cexp
j,k , or

(1 + ∆t
J∑

i=1

κi, jmk
i )m

k+1
j = (1 −

∆t
∆x

Ak
j − ∆t(dk

j + a j))mk
j +

∆t
∆x

(Ak
j − Bk

j)m
k
j−1

+ ∆t
J∑

i= j

bi, jaimk
i +

∆t
2

j−1∑
i=1

κi, j−imk+1
i mk

j−i

gk
0mk

0 = ∆x
J∑

j=1

∗βk
jm

k
j ,

. (4.9)

for the implicit term, Cimp
j,k .

For these, schemes, we have the following Lemmas which are proven in the appendix:

Lemma 4.1. For each k = 1, 2, . . . , k̄,

• mk
j ≥ 0 for all j = 1, 2, . . . J,

• ‖µk
∆x‖TV ≤ ‖µ0‖TV exp((ζ + CbCa)T ).

Lemma 4.2. For any l, p = 1, 2, . . . , k̄,

‖µl
∆x − µ

p
∆x‖BL ≤ LT |l − p|.

Using the above two Lemmas, we can arrive at analogous results for the linear interpolation (4.10):

µ∆t
∆x(t) := µ0

∆xχ{0}(t) +

k̄−1∑
k=0

[
(1 −

t − k∆t
∆t

)µk
∆x +

t − k∆t
∆t

µk+1
∆x

]
χ(k∆t,(k+1)∆t](t). (4.10)

Thus by the well know Ascoli-Arzela Theorem, we have the existence of a convergent subsequence
of the net {µ∆t

∆x(t)} in C([0,T ],M+([0, xmax]). We now need only show any convergent subsequence
converges to the unique solution (3.2).

Theorem 4.1. As ∆x,∆t → 0 the sequence µ∆t
∆x converges in C([0,T ],M+([0, xmax])) to the solution of

(3.1).
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Proof. By multiplying (4.1) by a superfluously smooth test function φ ∈ (W1,∞ ∩ C2)([0,T ] × R),
denoting φk

j := φ(k∆t, x j), summing over all j and k, and rearranging we arrive at

k̄−1∑
k=0

J∑
j=1

(
(mk+1

j − mk
j)φ

k
j +

∆t
∆x

( f k
j+ 1

2
− f k

j− 1
2
)φk

j

)
+ ∆t

k̄−1∑
k=0

∞∑
j=1

dk
jm

k
jφ

k
j (4.11)

= ∆t
k̄−1∑
k=1

J∑
j=1

φk
j

1
2

j−1∑
i=1

κi, j−imk
i m

k
j−i −

J∑
i=1

κi, jmk
i m

k
j +

J∑
i= j

bi, jaimk
i − a jmk

j

 .
The left-hand side of equation (4.11) was shown in [13] to be equivalent to∫ xmax

0
φ(T, x)dµk̄

∆x(x) −
∫ xmax

0
φ(0, x)dµ0

∆x(x)

− ∆t
k̄−1∑
k=0

(∫ xmax

0
∂tφ(tk, x)dµk

∆x(x) +

∫ xmax

0
∂xφ(tk, x)g(tk, µ

k
∆x)(x)dµk

∆x(x)

−

∫
R+

d(tk, µ
k
∆x)(x)φ(tk, x)dµk

∆x(x) +

∫ xmax

0
φ(tk,∆x)β(tk, µ

k
∆x)(x)dµk

∆x(x)
)

+ o(1),

where o(1) −→ 0 as ∆t,∆x −→ 0.
The right-hand side of (4.11) was shown in [9] to be equal to

∆t
k̄−1∑
k=1

{
(K[µ∆t

∆x(tk)], φ(tk, ·)) + (F[µ∆t
∆x(tk)], φ(tk, ·))

}
+ O(∆x).

Making use of results, it is then easy to see (4.11) is equivalent to∫ xmax

0
φ(T, x)dµ∆t

∆x(T )(x) −
∫ xmax

0
φ(0, x)dµ0

∆x(x)

=

∫ T

0

(∫ xmax

0
∂tφ(t, x) + ∂xφ(t, x)g(t, µ∆t

∆x(t))(x)dµ∆t
∆x(t)(x)

−

∫ xmax

0
d(t, µ∆t

∆x(t))(x)φ(t, x)dµ∆t
∆x(t)(x) +

∫ xmax

0
φ(t,∆x)β(t, µ∆t

∆x(t))(x)dµ∆t
∆x(t)(x)

)
dt

+

∫ T

0
(K[µ∆t

∆x(t)], φ(t, ·)) + (F[µ∆t
∆x(t)], φ(t, ·)) dt + o(1).

Passing the limit as ∆t,∆x −→ 0 along a converging subsequence, we then obtain that equation (3.2)
holds for any φ ∈ (C2 ∩W1,∞)([0,T ] × R+) with compact support. A standard density argument shows
that equation (3.2) holds for any φ ∈ (C1 ∩W1,∞)([0,T ] × R+). As the weak solution is unique [6], we
conclude the net {µ∆t

∆x} converges to the solution of model (3.1). �

We point out that while these schemes are higher-order in space, they are only first order in time. To
lift these schemes into a second-order in time as well, we make use of the second-order Runge-Kutta
time discretization [16] for the explicit scheme and second-order Richardson extrapolation [17] for the
semi-implicit scheme.
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5. Numerical examples

In this section, we provide numerical simulations which test the order of the explicit and
semi-implicit schemes developed in the previous sections. We test each component separately,
beginning first with a pure coagulation equation in example 1 (where we set g = β = d = a = 0), then
a pure fragmentation equation in example 2 (where we set g = β = d = κ = 0). In example 3, we
consider all components of model (3.1) including the boundary term which is implemented as in
scheme (4.7). For readers interested in the schemes performance in the absence of the
coagulation-fragmentation processes, we direct you to [11–13]. For each example, we give the BL
error and the order of convergence. To appreciate the gain in the order of convergence compared to
those studied in [9], which are based on a first order approximation of the transport term, we add
some of the numerical results from the scheme presented in [9].

In some of the following examples, the exact solution of the model problem is given. In these cases,
we approximate the order of accuracy, q, with the standard calculation:

q = log2

 ρ(µ∆t
∆x(T ), µ(T ))

ρ(µ0.5∆t
0.5∆x(T ), µ(T ))


where µ represents the exact solution of the examples considered. In the cases where the exact solutions
are unknown, we approximate the order by

q = log2

 ρ(µ∆t
∆x(T ), µ2∆t

2∆x(T ))

ρ(µ0.5∆t
0.5∆x(T ), µ∆t

∆x(T ))


and we report the numerator of the log argument as the error. The metric ρ we use here was introduced
in [18] and is equivalent to the BL metric, namely

Cρ(µ, ν) ≤ ‖µ − ν‖BL ≤ ρ(µ, ν)

for some constant C (dependent on the finite domain). As discussed in [18], this metric is more efficient
to compute than the BL norm and maintains the same order of convergence. An alternative to this
algorithm would be to make use of the algorithms presented in [19], where convergence in the Fortet-
Mourier distance is considered.

Example 1 In this example, we test the quality of the finite difference schemes against coagulation
equations. To this end, we take κ(x, y) ≡ 1 and µ0 = e−xdx with all other ingredients set to 0. This
example has an exact solution given by

µt =

(
2

2 + t

)2

exp
(
−

2
2 + t

x
)

dx

see [20] for more details. The simulation is performed over the truncated domain (x, t) ∈ [0, 20] ×
[0, 0.5]. We present the BL error and the numerical order of convergence for both schemes in Table 1.
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Table 1. Error, order, and computation time for example 1. Here, Nx and Nt represent the
number of points in x and t, respectively. The numerical result in the last row for the 1st
order variant is generated from the scheme presented in [9].

Explicit Semi-Implicit
Nx Nt BL Error Order Time (secs) BL Error Order Time (secs)
100 250 0.0020733 1.0374 0.0020886 0.79633
200 500 0.00054068 1.9391 6.8224 0.00054408 1.9407 5.1724
400 1000 0.00013802 1.9699 98.525 0.00013883 1.9705 73.298
800 2000 3.4842e-05 1.9860 2430.2 3.5040e-05 1.9862 1792.5
1600 4000 8.7417e-06 1.9948 43381 8.7906e-06 1.9950 32361

Explicit (1st order) Semi-Implicit (1st order)
800 2000 0.015675 0.96974 523.11 0.010996 0.97418 1393.3

Example 2 In this example, we test the quality of the finite difference scheme against fragmentation
equations. We point out that in this case, the two schemes are identical in the spacial component. For
this demonstration, we take µ0 = e−xdx, b(y, ·) = 2

y dx and a(x) = x. As given in [21], this problem has
an exact solution of

µt = (1 + t)2 exp(−x(1 + t))dx.

The simulation is performed over the finite domain (x, t) ∈ [0, 20]×[0, 0.5]. We present the BL error and
the numerical order of convergence for both schemes in Table 2. Note as compared to coagulation, the
fragmentation process is more affected by the truncation of the domain. This results in the numerical
order of the scheme being further from 2 than example 1.

Table 2. Error, order, and computation time for example 2. Here, Nx and Nt represent the
number of points in x and t, respectively. The numerical result in the last row for the 1st
order variant is generated from the scheme presented in [9].

Explicit Semi-Implicit
Nx Nt BL Error Order Time (secs) BL Error Order Time (secs)
100 250 0.0053857 1.0148 0.0053836 0.78499
200 500 0.0014548 1.8883 6.7398 0.0014536 1.8890 5.1448
400 1000 0.00037786 1.9449 99.38 0.00037753 1.9449 73.587
800 2000 9.6317e-05 1.9720 2369.4 9.6322e-05 1.9707 1763.3

1600 4000 2.4468e-05 1.9769 43512 2.4514e-05 1.9743 32585
Explicit (1st order) Semi-Implicit (1st order)

800 2000 0.059804 0.9128 574.91 0.096943 0.86667 1368.9

Example 3 In this example, we test the schemes against the complete model (i.e., with all biological
and physical processes). To this end, we take µ0 = e−xdx, g(x) = 2 − 2ex−20, β(x) = 2, d(x) = 1,
κ(x, y) = 1, a(x) = x, and b(y, ·) = 2

y . The simulation is performed over the finite domain (x, t) ∈
[0, 20] × [0, 0.5]. To our knowledge, the solution of this problem is unknown.
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Table 3. Error, order, and computation time for example 3. Here, Nx and Nt represent the
number of points in x and t, respectively. The numerical result in the last row for the 1st
order variant is generated from the scheme presented in [9].

Explicit Semi-Implicit
Nx Nt BL Error Order Time (secs) BL Error Order Time (secs)
100 250 0.0023026 1.0332 0.0028799 0.74398
200 500 0.00085562 1.4282 6.8831 0.00076654 1.9096 5.5104
400 1000 0.0002743 1.6412 100.57 0.00076654 1.9549 75.055
800 2000 7.5404e-05 1.8631 2371.2 5.021e-05 1.9775 1739.1
1600 4000 1.9495e-05 1.9515 43779 1.2651e-05 1.9887 32286

Explicit (1st order) Semi-Implicit (1st order)
800 2000 0.0092432 0.97728 625.3 0.0014192 0.98355 1112.8

Example 4 As mentioned in [9], the mixed discrete and continuous fragmentation model studied
in [7,8], with adjusted assumptions, is a special case of model (3.1). Indeed, by removing the biological
and coagulation terms and letting the kernel

(b(y, ·), φ) =

N∑
i=1

bi(y)φ(ih) +

∫ y

Nh
φ(x)bc(y, x)dx

with supp bc(y, ·) ⊂ [Nh, y] for some h > 0, we have the mixed model in question. We wish to
demonstrate the finite difference scheme presented here maintains this mixed structure.

To this end, we take the fragmentation kernel

bc(y, x) =
2
y
, bi(y) =

2
y
, and a(x) = x−1,

with initial condition µ =
∑5

i=1 δi +χ[5,15](x)dx, where χA represents the characteristic function over the
set A. This is similar to some examples in [8], where more detail and analysis are provided. In Figure
1, we present the simulation of this example. Notice, the mixed structure is preserved in finite time.
For examples of this type, the scheme could be improved upon by the inclusion of mass conservative
fragmentation terms similar to those presented in [6].

6. Conclusion

In this paper, we have lifted two of the first order finite difference schemes presented in [9] to second
order high resolution schemes using flux limiter methods. The difference between both schemes is only
found in the coagulation term, where the semi-implicit scheme is made linear. In context of standard
structured population models (i.e. without coagulation or fragmentation), these type of schemes have
been shown to be well-behaved in the presences of discontinuities and singularities. This quality
makes them a well fit tool for studying PDEs in spaces of measures. We prove the convergence of both
schemes under the assumption of natural CFL conditions. The order of convergence of both schemes
is then tested numerically with previously used examples.
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Figure 1. Initial condition and numerical solution at time T = 4 of example 4.

In summary, the schemes preform as expected in the presence of smooth initial conditions. In
all such simulations, the numerical schemes presented demonstrate a convergence rate of order 2.
For simulations with biological terms, this convergence rate is expected to drop when singularities
and discontinuities occur, as demonstrated in [13]. Mass conservation of the schemes, an important
property for coagulation/fragmentation processes, is discussed in detail in [6, 9].
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7. Appendix

7.1. Proof of Lemmas 4.1 and 4.2

In this section, we present the proofs of Lemmas 4.1 and 4.2 for the explicit coagulation term. The
semi-implicit term follows from similar arguments in the same fashion as [9].

Proof of Lemma 4.1

Proof. We first prove via induction that for any k = 1, 2, . . . , k̄, µk
∆x satisfies the following:

(i) µk
∆x ∈ M

+(R+) i.e. mk
j ≥ 0 for all j = 1, . . . , J,

(ii) ‖µk
∆x‖TV ≤ ‖µ

0
∆x‖TV(1 + (ζ + CbCa)∆t)k.

Then, the TV bound in the Lemma follows from standard arguments (see e.g. Lemma 4.1 in [9]). We
prove this Theorem for the choice of the explicit coagulation term, Cexp

j,k , as the implicit case is similar
and more straight forward.

We begin by showing that mk+1
j ≥ 0 for every j = 1, 2, . . . , J. Notice by way of (4.8), this reduces

down to showing
∆t
∆x

Ak
j + ∆t(dk

j + a j) + ∆t
J∑

i=1

κi, jmk
i ≤ 1.

Indeed, by the CFL condition (4.6), induction hypothesis, and

J∑
i=1

κi, jmk
i ≤ Cκ

J∑
i=1

mk
i = Cκ‖µ

k
∆x‖TV ≤ Cκ‖µ

0
∆x‖TV exp((ζ + CbCa)T ),

we arrive at the result.
For the TV bound, we have since the mk

j are non-negative, ‖µk
∆x‖TV =

∑J
j=1 mk

j. By rearranging (4.8)
and summing over j = 1, 2, . . . , J we have

‖µk+1
∆x ‖TV ≤

J∑
j=1

mk
j +

∆t
∆x

J∑
j=1

(
f k

j− 1
2
− f k

j+ 1
2

)
+ ∆t

J∑
j=1

J∑
i= j

bi, jaimk
i

+∆t
(1
2

J∑
j=1

j−1∑
i=1

κi, j−imk
i m

k
j−i −

J∑
j=1

J∑
i=1

κi, jmk
i m

k
j

)
.

(7.1)

To bound the right-hand side of equation (7.1), we directly follow the arguments of Lemma 4.1 in [9]
which yields

‖µk+1
∆x ‖TV ≤ (1 + (ζ + CaCb)∆t)

J∑
j=1

mk
j = (1 + (ζ + CaCb)∆t)‖µk

∆x‖TV .

Using the induction hypothesis, we obtain ‖µk+1
∆x ‖TV ≤ ‖µ

0
∆x‖TV(1 + (ζ + CbCa)∆t)k+1 as desired. �
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Proof of Lemma 4.2

Proof. For φ ∈ W1,∞(R+) with ‖φ‖W1,∞ ≤ 1, and denoting φ j := φ(x j), we have for any k,

(µk+1
∆x − µ

k
∆x, φ) =

J∑
j=1

(mk+1
j − mk

j)φ j

≤∆t
J∑

j=1

φ j

( 1
∆x

( f k
j− 1

2
− f k

j+ 1
2
) − dk

jm
k
j − a jmk

j

+
1
2

j−1∑
i=1

κi, j−imk
i m

k
j−i −

J∑
i=1

κi, jmk
i m

k
j +

J∑
i= j

bi, jaimk
i

)
.

Let C be the right-hand side of the TV-bound from Lemma 4.1, we then see

(µk+1
∆x − µ

k
∆x, φ) ≤

∆t
∆x

J∑
j=1

φ j( f k
j− 1

2
− f k

j+ 1
2
) + ∆t(ζ + Ca + CbCa +

3
2

CκC∗)C∗.

Moreover, since gk
J = 0 the sum in the right-hand side takes the form

φ1gk
0mk

0 +

J−1∑
j=1

(φ j+1 − φ j) f k
j+ 1

2
= ∆xφ1

J∑
j=1

∗βk
jm

k
j +

J−1∑
j=1

(φ j+1 − φ j) f k
j+ 1

2
≤ 3.5∆xζC∗.

We thus obtain

(µk+1
∆x − µ

k
∆x, φ) ≤ L∆t, L := (3.5ζ + Ca + CbCa +

3
2

CκC∗)C∗.

Taking the supremum over φ gives ‖µk+1
∆x − µ

k
∆x‖BL ≤ L∆t for any k. The result follows. �

7.2. Estimate of mass loss for the implicit coagulation discretization given by Cimp
j,k

In this section, we consider the semi-implicit scheme (4.9) without any biological ingredients or
fragmentation (i.e., a, g, d, β = 0) where mass is not conserved (observed by the numerical experiments
in Section 5) and show this change is controlled by the time step. For a bound on the loss of mass via
fragmentation, we direct the reader to Section 6.1 of [6]. Multiplying (4.9) by x j and summing over j,
we can arrive at

J∑
j=1

x jmk+1
j =

J∑
j=1

x jmk
j +

∆t
2

J∑
j=1

j−1∑
i=1

x j κi, j−imk+1
i mk

j−i − ∆t
J∑

j=1

J∑
i=1

x jκi, jmk
i m

k+1
j .

In [6, Section 6.1] it was shown that the explicit scheme conserves mass through the coagulation
process, i.e.,

∆t
2

J∑
j=1

j−1∑
i=1

x j κi, j−imk
i m

k
j−i − ∆t

J∑
j=1

J∑
i=1

x jκi, jmk
i m

k
j = 0.
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Adding this to the previous equation we have

J∑
j=1

x jmk+1
j =

J∑
j=1

x jmk
j +

∆t
2

J∑
j=1

j−1∑
i=1

x j κi, j−i(mk+1
i − mk

i )m
k
j−i

− ∆t
J∑

j=1

J∑
i=1

x jκi, jmk
i (m

k+1
j − mk

j)

=

J∑
j=1

x jmk
j +

∆t
2

J∑
i=1

J∑
l=1

xl+i κi,l(mk+1
i − mk

i )m
k
l

− ∆t
J∑

j=1

J∑
i=1

x jκi, jmk
i (m

k+1
j − mk

j),

where in the last equality, we change the order of integration and introduce the new index l = j − i.
Noticing that due to the uniform mesh size xl+i = xl + xi, we can split the second term on the right-hand
side and obtain the equation

J∑
j=1

x jmk+1
j =

J∑
j=1

x jmk
j +

∆t
2

J∑
i=1

J∑
l=1

xi κi,l
(
mk

l (m
k+1
i − mk

i ) − mk
i (m

k+1
l − mk

l )
)
.

Since x j ≤ xmax, we can bound the last term on the right-hand side∣∣∣∣∣∣∣∆t
2

J∑
i=1

J∑
l=1

xi κi,l
(
mk

l (m
k+1
i − mk

i ) − mk
i (m

k+1
l − mk

l )
)∣∣∣∣∣∣∣ ≤ ∆t Cκxmax‖µ

k
∆x‖TV ‖µ

k+1
∆x − µ

k
∆x‖BL.

Using Lemmas 4.1 and 4.2, we have the estimate∣∣∣∣∣∣∣
J∑

j=1

x jmk+1
j − x jmk

j

∆t

∣∣∣∣∣∣∣ ≤ CκxmaxL exp((ζ + CaCb)T )‖µ0‖TV∆t.
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