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Abstract

The outbreak of COVID-19 disease caused by the SARS-CoV-2 in 2019 has claimed over 6.3 million lives.

The pandemic prompted many countries to set up some preventive measures as means to control the spread

of the disease. In this thesis, a deterministic system of coupled differential equations is proposed to study

the transmission of COVID-19 among a well-mixed population with intervention strategies. The existence

and uniqueness of the classical solution of the COVID-19 model are proved. The equilibrium points of the

model are analyzed and, the basic reproduction number is obtained. The local asymptotic stability and the

global asymptotic stability of the model are carried out. An adaptive Dormand–Prince numerical method

is used to obtain approximate solution of the model. The results shows that combined control parameters

may reduce the burden of COVID-19 faster in the population. In addition, the outcomes of this study

show that in order to mitigate the spread of COVID-19 in the overall population, non-pharmaceutical

intervention strategies such as social distancing, self-isolation, and hand washing should be practiced at

the maximum and people should be vaccinated.

Keywords: COVID-19, Local stability, Global stability, Basic reproduction number,

Numerical simulation.



Nomenclature

The state variables and parameters are described below.

State variable and Description

State variable Description

S Susceptible Individuals

E Exposed Individuals

I Infected Individuals

Q Quarantined Individuals

R Recovered Individuals

V Vaccinated Individuals

N Total population

Parameters and Description

Parameter Description

Λ Recruitment rate

κ Parameter corresponding to the combination of the following measures

such as Social-distancing, Self-isolation, and Hand-washing

ϕ1, ϕ2, ϕ3 Vaccination rate in the S, E, I compartment

θ, ω Loss of vaccine immunity and natural immunity

µ, δ Natural and Induced death rate respectively

β Effective transmission rate

q Population of the isolated Infected Individuals

α Progression rate of Exposed Individuals to the infected compartment

γ1, γ2 Rate of recovery of Infected and Quarantined Individuals
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Chapter 1

Introduction

1.1 Introduction to COVID-19

On 11 March 2020, the World Health Organization (WHO) declared COVID-19 a pandemic. Since the first

case of infection with this new coronavirus was reported in China in December 2019, SARS-CoV-2, as we

now know it to be called, has killed over 6 million people with total cases of more than 600 million reported

cases [30]. Since the initial outbreak of the coronavirus, it has since spread to almost every country in the

world. The broad family of viruses known as coronaviruses are known to cause illnesses ranging from the

common cold to more serious conditions like Severe Acute Respiratory Syndrome (SARS) and Middle East

Respiratory Syndrome (MERS).[3]. COVID-19 is spread by dust particles and fomites when the infector

and the infected person come into close, dangerous contact. Airborne distribution has not been recorded

for COVID-19 and is not known to be a significant transmission medium based on empirical evidence,

although it can be imagined if such aerosol-generating practices are carried out in medical facilities. Faecal

spread has been seen in certain patients, and the active virus has been reported in a small number of

clinical studies. Furthermore, the faecal-oral route does not seem to be a COVID-19 transmission medium;

its function and relevance for COVID-19 need to be identified. For about 18,738,580 laboratory-confirmed

cases recorded as of the second week of April 2020, the maximum number of cases (77.8%) was between 30

and 69 years of age. Among the recorded cases, 21.6% are farmers or employees by profession, 51.1% are

male, and 77.0% are Hubei [13].

Although, COVID-19 first appeared in 2019, it wasn’t until February 27, 2020, that it reached Nigeria.

Through the Federal Ministry of Health, the Nigerian government has been stepping up efforts to promptly

contain and control any outbreaks there. In order to respond to this case and put strict control measures

in place, the multi-sector Coronavirus Preparedness Group, coordinated by the Nigeria Centre for Disease

Control (NCDC), launched its National Emergency Operations Centre. The first phase of lockdown in

Nigeria was initiated in April 2020. Prior to the shutdown, crowd space and even religious homes and
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gatherings were restricted. Later, a number of lock-downs occurred since it was difficult to stop the spread.

As time went on, restrictions and a complete lockdown were declared. As the economy remained stagnant,

the government was given palliatives, which were then dispersed throughout the states of Nigeria. Despite

the abundance of the palliatives, numerous news outlets reported that many were receiving minimal

amounts [25].

During lock down, some businesses were suspended. In other states, such as Lagos, people are only

permitted to leave their homes during certain hours while wearing protective gear, such as face guards and

nasal masks. With all the measures in place, the virus did not stop spreading while families, individuals,

and businesses were significantly affected by the stringent measures put in place. COVID-19 vaccines was

introduced to Nigeria in March 2021. The vaccination exercise was opened with the highest officials in the

nation getting vaccinated. Despite the examples set by the officials, most Nigerians were very hesitant to

take the jabs. In recent times, it has lately been noted that many people have taken both the first and

second doses of the vaccination because the vaccination certificate is required to access facilities and some

other privileges. Despite the federal government lifting the restriction certain places (particularly in the

banking industry) continue to use the ”no mask, no entry” policy. The vaccination certificate is now a

must because it is one of the essential documents one needs to have.

Several articles have numerically studied COVID-19 and developed mathematical models to understand the

spread of the deadly COVID-19 disease. Only a few of them, however, have talked about how vaccinations

can help stop the spread of the virus. However, to restrict the spread of COVID-19, this study provides a

mathematical model of the effects of vaccines and other non-pharmaceutical control measures.

1.2 Objectives of the Study

The general objective of this work is to develop a mathematical model that has the potential to predict the

impact of both vaccination and non-pharmaceutical intervention strategies against COVID-19 mortality

and morbidity in Nigeria.

The specific objectives of the study are as follows:

1. To formulate the mathematical model and establish its well-posedness.

2. To determine the existence of the equilibrium points of the formulated model.

3. To establish the basic reproduction number using the next-generation matrix approach.

4. To establish the local asymptotic stability of the disease-free equilibrium points.

5. To establish the global asymptotic stability of the disease-free equilibrium points using the Lyapunov

function method.
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6. To simulate numerically the model to determine the effects of the model parameters on the infection

with COVID-19 within the Nigerian population.

1.3 Significance of the Study

The mathematical model developed in this thesis provides a potential approach to predict the impact

of both vaccination and non-pharmaceutical intervention strategies against COVID-19 mortality and

morbidity in Nigeria. This study will be a useful reference for researchers conducting future studies on the

impact of vaccination with or without additional control intervention measures in reducing COVID-19

spread in Nigeria. The results from this study will assist vaccine developers in evaluating and assessing

the impact of vaccinations in preventing COVID-19 in the health sector. As main outcome, the model

may become a prediction tool for public health policymakers to determine the particular conditions in

which the disease-modified vaccine will be effective, as well as different intervention measures that will be

advantageous for epidemic control.

1.4 Definitions of Used Terms

The following are key definitions of terminology and concepts used in this study. Most of the definitions

can be found in Martcheva’s book [21].

Mathematical Model: A mathematical model is a description of a system or a process using mathe-

matical concepts and language.

Autonomous System: An ordinary differential equation is called an autonomous system if it is of the

form;

ẋ = f(x) x ∈ Rn(n ∈ N), (1.1)

where ẋ denotes the derivative with respect to a smooth function x.

Equilibrium Point: A point x = x0 ∈ Rn is an equilibrium point of system (1.1) if f(x0) = 0.

Stable Equilibrium Point: An equilibrium point x0 ∈ Rn is said to be stable if given ϵ > 0 there exists

δ = δ(ϵ) > 0 such that, any solution y(t) ∈ C1 (t0,∞) of (1.1) satisfies

|x0 − y(t)| < ϵ, whenever |x0 − y(t0)| < δ,

for t > t0 ∈ R.

Asymptotically Stable: The equilibrium x0 is said to be asymptotically stable if there exists a constant

c > 0 such that, for any solution y(t) ∈ C1 (t0,∞) of (1.1) satisfying |x0 − y(t0)| < c, then

lim
t→∞

|x0 − y(t)| = 0.
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Unstable: An equilibrium point x0 that is not stable is said to be unstable.

Jacobian matrix: The Jacobian matrix J(x) of the function f : Rn → Rn is defined as the matrix,

J(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)

...
. . .

...

∂fn
∂x1

(x) · · · ∂fn
∂xn

(x)

 .

Disease Free Equilibrium: The disease-free equilibrium (DFE) is defined as the equilibrium point at

which there is absence of disease in the population.

Susceptible individuals: A susceptible individual is a member of a population who is at risk of becoming

infected by a disease.

Exposed or Latent individuals: These are individuals who are infected with the disease but not yet

infectious.

Infectious individuals: These are individuals who have acquired the disease and can infect others.

Quarantined individuals: These are individuals who have been restricted or separated from individuals

who were exposed to the disease to see if they become sick.

Vaccinated individuals: These are individuals who received vaccine against a particular disease or those

that are immunized.

Recovered or Removed individuals: These are individuals who have been infected and have either

recovered from the disease and entered the removed compartment or died. It is assumed that the

number of deaths is negligible with respect to the total population.

Prevalence: The prevalence of a disease is the number of people who have the disease at a specific time

divided by the total population size.

Disease Induced Mortality: This is the number of people who have died from the disease in one unit

of time (e.g., one year) divided by the entire population.
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Chapter 2

Review of Literature

One of the most aggressive human pathogens affecting our nowadays society is the Coronavirus. This

virus attacks the respiratory system of the human body, and this has remained a worldwide risk. The

infection was at first called ”novel coronavirus 2019” (2019-nCoV) on the 12th of January 2020 by the

World Health Organization (WHO), and officially named ”severe acute respiratory syndrome coronavirus-2”

(SARS-CoV-2) by the international committee of the Coronavirus Study Group (CSG), and WHO calls

the disease ”coronavirus disease 2019” (COVID-19) [14], [20]. SARS-CoV-2 is a specific virus that can

cause COVID-19, a disease. The first outbreak originated in Wuhan, China in December 2019. COVID-19

subsequentially spread globally to become the fifth documented pandemic since the 1918 flu pandemic.

SARS-CoV-2 is an enveloped and spherical particle carrying a positive-sense single-stranded RNA genome

and it belongs to the subfamily coronavirinae, family coronavirdae, and order Nidovirales [19]. Previous

studies showed that every human coronavirus have animal origins called natural hosts of HCOV-229E,

SARS-COV, HCOV-NL63, and MERS-COV. Bats are really important and they are the major natural

reservoirs of alpha-coronaviruses and beta-coronaviruses [35].

Bats are presumably reservoir hosts for SARS-COV2 and there was no intermediate host sample obtained

by Scientists in an initial cluster of infections at the Huanan Seafood and Wildlife Market in Wuhan, China,

where the sale of wild animals may be the source of zoonotic infection [16]. SARS-COV-2 is transmitted

from person to person via direct contact or through droplets spread by coughing or sneezing from an

infected individual [35]. Typically, droplets can only travel a distance of two meters and hang in the air

for a short period of time. However, SARS-COV-2 remains intact and contagious in droplets (less than

five microns in diameter) and can be suspended in the air for up to three hours [11]. Transmission of

SARS-COV-2 from mother to fetus child could not be ruled out as there was a recent studies that showed

Immunoglobin M (IgM) antibodies to SARS-COV-2 were present in newborn infant blood [20], [10], [38].

The symptoms of COVID-19 infection appear after an incubation period of approximately 5.2 days [19].

The period from the onset of COVID-19 symptoms to death ranged from 6 to 41 days with a median

of 14 days [35]. This period is dependent on the age of the patient and status of the patient’s immune
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system. It was shorter among patients above 70-years old compared with those under the age of 70 [35].

The majority of COVID-19 infection’s clinical signs are comparable to those of the other two coronaviruses

in the same family. Fever, headache, myalgia, diarrhoea, dry cough, nausea, chest discomfort, exhaustion,

and dyspnea are some of the symptoms [16], [15]. In severe cases, symptomatically infected persons often

have moderate-to-severe respiratory symptoms, which can lead to severe pneumonia [39]. Few COVID-19

infected patients have strong upper respiratory tract signs and symptoms such as sneezing or sore throat,

in contrast to SARS-CoV and MERS-CoV infections, suggesting that SARS-CoV-2 prefers to infect the

lower respiratory tract [16]. Arrhythmia, hypoxemia, acute cardiac injury, acute ARDS, acute kidney

injury, and shock have also been observed in COVID-19 patients [16], [4].

The COVID-19 epidemic has had far-reaching consequences, affecting not only people’s lives and health,

but also the environment. It has not only highlighted the poor health infrastructure in the world, even in

the most developed countries, but has also had a negative impact on the global economy. Almost the entire

planet is gridlocked, all economic and commercial activity came to a standstill. It has stunned the world’s

largest economies, namely China and the United States, where there has been an economic downturn since

the coronavirus pandemic [33]. Third World countries, such as Nigeria, are among the hardest hit by the

economic crisis. In recent months, millions of people have lost their jobs. Debt repayment is impossible

for poor countries. Nigeria, the most populous country in Africa with over 200 million inhabitants [2], is

the main target of economic devastation. Millions of people have not recovered from the poor economy

caused by COVID-19. In Nigeria, as in other nations throughout the world, the COVID-19 pandemic

poses a serious threat to human health and the economy. This virus is much more damaging in Nigeria

because non-pharmaceutical therapies and vaccinations are extremely difficult to administer in a country

like Nigeria. When the first case was confirmed, the government could not impose a nationwide lockdown.

The first COVID-19 case was reported in Lagos State on February 27, 2020, when an Italian national

tested positive for the virus [9]. Approximately 255,924 cases have been confirmed, 249,961 patients have

been discharged, 5,152,011 samples have been examined, and 3,143 people have died due to the infection’s

spread [8].

Mathematical models are extremely important in understanding the transmission dynamics and control

of emerging and re-emerging infectious diseases. Predicting the severity of the COVID-19 pandemic and

suggesting appropriate public health response techniques are two of humanity’s most pressing concerns

today. A number of mathematical models have recently been presented to investigate the COVID-19

pandemic’s transmission patterns. Okounghae et al. [27] presented a mathematical model to investigate

the effects of non-pharmaceutical control measures on the population dynamics of the novel coronavirus

disease 2019. In their study, they provided forecasts for the cumulative number of reported cases and

active cases for different levels of the control measures used in their model. They were able to achieve

the fundamental reproduction number, and their numerical simulations demonstrate that the disease will

eventually die out in the population if at least 55% per cent of the population adheres to social distancing
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and the use of face masks while in public. The authors advised policymakers and others in positions of

authority to aggressively screen and test persons in the public for new cases of COVID-19 symptomatic or

asymptomatic infection, as well as to strictly enforce the usage of face masks and social distance measures.

During the early outbreaks in Kano, Nigeria, Salihu S. et al. [22] employed mathematical modelling to

estimate the number of COVID-19 underascertained η and the basic reproduction number R0. Their

findings resemble an exponential development pattern that resembles the epidemic curve of COVID-19 in

Kano. According to their research, the number of COVID-19 instances is underreported, and this occurred

in the fourth week of April 2020. They suggested that epidemiological studies and mitigation actions should

be prioritized in the near future, as this will help to prevent COVID-19 from spreading in Kano, Nigeria.

Their findings also show that the basic reproduction number R0, which is 2.74 (95% CI : 2.53–2.96), has

the potential to cause massive epidemics. Their forecasts are crucial for future epidemic response. Iboi

et al. [17] developed a mathematical model to investigate COVID-19 transmission dynamics and control

in Nigeria. In several Nigerian jurisdictions, data from the Nigeria Centre for Disease Control (NCDC)

was utilized to assess the community-wide impact of various control and mitigation techniques. Their

research found that COVID-19 can be effectively controlled in Nigeria if control and mitigation techniques

are able to achieve the Rc < 1 threshold quantity. Furthermore, COVID-19 will be impossible to produce

substantial outbreaks in Nigeria if rigorous social distancing measures are established (and maintained for

a lengthy period of time).

Deressa et al. [6] proposed a mathematical model to predict COVID-19 transmission dynamics in Ethiopia.

Their findings revealed that the disease-free and endemic equilibrium points for R0 < 1 and R0 > 1,

respectively, are asymptotically stable locally and globally. The basic reproduction number R0 = 1.5085 is

greater than 1. However, in order to minimize the R0, the goal must be to lower the transmission rate

from asymptotically infected to suspected individuals (α), at the very least lowering the parameter α to

0.47, which will reduce the coronavirus from Ethiopia. The ideal mix of public health education, personal

preventative measures, and treatment of hospitalized or isolated cases, according to the results from the

optimal analysis and simulation, would considerably limit the COVID-19 pandemic in Ethiopia. Finally,

their research findings can be used as policy input by the Ethiopian government and other countries.

The government must take the required steps to ensure that the following preventative techniques are

implemented consistently throughout the epidemic. Adewole et al. [1] created a deterministic model that

describes COVID-19 dynamics in Nigeria. The basic reproduction number was calculated and used to

assess the model’s disease-equilibrium solution’s stability. The model’s essential parameters were estimated

using data from the Nigeria Centre for Disease Control (NCDC). The authors investigated cost-effective

solutions for time-independent controls to suppress virus transmission within a given time frame using

Pontryagin’s maximal principle. Their findings suggest that rigorous adherence to WHO recommendations,

good contact tracing, and population testing for COVID-19 may all be accomplished in a short amount

of time to prevent the disease spread. Oke et al. [26] theoretically examined the impact of disregarding
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asymptomatic patients on the transmission of COVID-19 in Africa. They measured the basic reproduction

number and checked for backward bifurcation. Additionally, the Local and Global asymptotic Stabilities

were established. Their findings indicate that increasing case detection to find infected people who are

asymptomatic will be very successful in limiting and lessening the impact of COVID-19 in Africa. Enforcing

a living arrangement where recovered individuals are not permitted to mix with the susceptible or exposed

individuals will also aid in restricting the spread of COVID-19 because it is unknown if a recovered

individual can become re-infected or not.
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Chapter 3

Methodology

3.1 Formulation of the Governing Equations

We assume that the total human population at a time t ⩾ 0 denoted by N(t) is divided into mutually

exclusive sub-populations of Susceptible humans S(t), Exposed humans E(t), Infected humans I(t),

Quarantined humans Q(t), Recovered humans R(t), and Vaccinated humans V (t). Thus,

N(t) = S(t) + E(t) + I(t) +Q(t) +R(t) + V (t) for all t ⩾ 0.

Figure 3.1 shows the Epidemic Interactions among the human compartments. The Susceptible humans

are represented as S and the human populations are recruited into the S-compartment at a constant rate

Λ ∈ (0,∞). Introducing the parameter κ that represents intervention strategies into the force of infection

ξ. The force of infection ξ is strictly positive and depends on κ. Susceptible humans become exposed when

they come into contact with infectious humans at the transmission rate β ∈ (0, 1). The parameters ϕ1, ϕ2,

and ϕ3 represent the vaccination rate for humans in the Susceptible, Exposed, and Infected compartments,

respectively. The parameters γ1 and γ2 represent the recovery rate of infected humans and quarantined

humans, respectively. Vaccines reduce the risk of COVID-19, including the risk of several illnesses and

death among people who are fully vaccinated. Most people who get COVID-19 got it when they were

unvaccinated. However, in this study, we assume that the vaccines are not 100% effective at preventing

infection, some people who are fully vaccinated will still get COVID-19. The parameter θ ∈ (0, 1) is the

loss of immunity gained from vaccination, the parameter δ is the induced death rate, and the parameter ω

is the natural loss of immunity after recovery.
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Figure 3.1: A scheme showing Epidemic Interactions among the human compartments.

The model for COVID-19 transmission dynamics in a population is given by the system of deterministic

coupled non-linear differential equations (3.1), which is based on the assumptions utilized in the design of

the COVID-19 model. We look for (S,E, I,Q,R, V ) that are (C1(0, T )× C0(0, T ))6 for some T > 0 that

satisfy the ordinary differential equation



dS
dt = Λ− ξIS − µS − ϕ1S + θV + ωR, t > 0

dE
dt = ξIS − µE − ϕ2E − αE, t > 0

dI
dt = αE − (γ2 + µ+ q + ϕ3 + δ)I, t > 0

dQ
dt = qI − (µ+ γ1)Q, t > 0

dR
dt = γ2I + γ1Q− (µ+ ω)R, t > 0

dV
dt = ϕ1S + ϕ2E + ϕ3I − (µ+ θ)V, t > 0

(3.1)

with initial conditions

S(0) = s0 > 0, E(0) = e0 > 0, I(0) = i0 > 0, Q(0) = q0 > 0, V (0) = v0 > 0, R(0) = r0 > 0, (3.2)

where (Λ, ξ, ϕ1, ϕ2, ϕ3, θ, ω, µ, δ, β, q, α, κ, γ1, γ2) ∈ (0,∞)15 are positive real parameters, and the force of

infection is
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ξ =
β(1− κ)

N
(3.3)

originally suggested by [27].

3.2 Qualitative Analysis of the Model

3.2.1 Positivity and Boundedness of Solutions

To investigate the dynamics of any disease, it is important to understand the behavior of the solution

over time t. For human disease modeling, it is important to show that the solutions will be positive and

bounded over a long time. Let t0 > 0, then for all t ∈ [0, t0], the values of the parameters can be chosen so

that the solution S(t), E(t), I(t), Q(t), R(t), and V (t) to ODE (3.1) with the positive initial conditions as

defined in equation (3.2).

Lemma 3.2.1 (Boundedness). Positive constants Sc, Ec, Ic, Qc, Vc, Rc, and Vc exists for the solutions

(S(t), E(t), I(t), Q(t), V (t), R(t)), of the model equation (3.1)-(3.2) such that limt→∞ supS(t) ⩽ Sc,

limt→∞ supE(t) ⩽ Ec, limt→∞ sup I(t) ⩽ Ic, limt→∞ supQ(t) ⩽ Qc, limt→∞ supR(t) ⩽ Rc, and

limt→∞ supV (t) ⩽ Vc, for all t ∈ [0, t0], t0 > 0 and the solution vector is positive.

Proof. To show boundedness, we add all the equations in (3.1) and we obtain

dN
dt = Λ− µN − δI ⩽ Λ− µN .

It then follows that dN
dt ⩽ 0, if N ⩾ Λ

µ . Thus solving dN
dt ⩽ Λ − µN by applying Gronwall’s inequality

leads to,

N(t) ⩽ N(0)e−µt + (1− e−µt)
Λ

µ
⩽ N(0) +

Λ

µ
, which is bounded.

In particular, if N(0) ⩽ Λ
µ , then

N(t) ⩽ N(0)e−µt + (1− e−µt)
Λ

µ
⩽

Λ

µ
e−µt +

Λ

µ
− Λ

µ
e−µt =

Λ

µ
.

Thus, the region

D = [(S,E, I,Q,R, V ) ∈ R6
+ : S(t) + E(t) + I(t) +Q(t) +R(t) + V (t) ⩽

Λ

µ
],

is positively invariant region for the model (3.1). Furthermore, If N(0) > Λ
µ then either the solution of the

model (3.1) enters D in a finite time or N(t) approaches Λ
µ asymptotically.

Hence, region D attracts all solutions of the model (3.1) in R6
+.
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3.2.2 Existence and Uniqueness Theorems

Equation (3.1) is an autonomous system with f defined in equation (3.4). Thus, we have,

f1(S,E, I,Q,R, V ) = Λ− ξIS − µS − ϕ1S + θV + ωR,

f2(S,E, I,Q,R, V ) = ξIS − µE − ϕ2E − αE,

f3(S,E, I,Q,R, V ) = αE − (γ2 + µ+ q + ϕ3 + δ)I,

f4(S,E, I,Q,R, V ) = qI − (µ+ γ1)Q,

f5(S,E, I,Q,R, V ) = γ2I + γ1Q− (µ+ ω)R,

f6(S,E, I,Q,R, V ) = ϕ1S + ϕ2E + ϕ3I − (µ+ θ)V.

(3.4)

We use the following theorem to establish the existence and uniqueness of solution for the model (3.1). To

prove this, we need the following standard results

Theorem 3.2.2 (Existence and Uniqueness Theorem). Define the domain D such that D = {|t− t0| ⩽

a, ∥X −X0∥ ⩽ b} ⊆ C1 where X = (S,E, I,Q,R, V )T and X0 = (s0, e0, i0, q0, r0, v0)
T .

Then, the problem (3.1) written in matrix form

Ẋ = f(X)

has a unique solution in D if f(X) is continuous in D and there exist constants K1,K2,K3,K4,K5,K6

such that∣∣∣ ∂f∂S ∣∣∣ < K1,
∣∣∣ ∂f∂E

∣∣∣ < K2,
∣∣∣∂f∂I ∣∣∣ < K3,

∣∣∣ ∂f∂Q

∣∣∣ < K4,
∣∣∣ ∂f∂R

∣∣∣ < K5,
∣∣∣ ∂f∂V

∣∣∣ < K6

Proof. We shall show that the solution to the system (3.4) exists and the solution is unique.

Existence Theorem. Clearly, the functions f1, · · · , f6 as defined in (3.4) are continuous and bounded in

D, hence, there exists a solution in D.

Uniqueness Theorem. It is left to prove the uniqueness of the solution. To show that there is a unique

solution to the system of the equations (3.4), we shall show that ∂fi
∂xj

, i, j = 1, 2...6 are continuous

and bounded. We explore the following partial derivatives for all the model equations (3.4). Starting

from the first equation in the functions (3.4), we have

∂f1
∂S

= −ξI − (µ+ ϕ1),

∣∣∣∣∂f1∂S

∣∣∣∣ = |−ξI − (µ+ ϕ1)| ⩽ K < ∞

∂f1
∂E

= 0,

∣∣∣∣∂f1∂E

∣∣∣∣ = |0| < ∞,
∂f1
∂I

= −ξS − (µ+ ϕ1)S∣∣∣∣∂f1∂I

∣∣∣∣ = |−ξS − (µ+ ϕ1)S| < ∞ ∂f1
∂Q

= 0,

∣∣∣∣∂f1∂Q

∣∣∣∣ = |0| < ∞

∂f1
∂R

= ω,

∣∣∣∣∂f1∂R

∣∣∣∣ = |ω| < ∞,
∂f1
∂V

= θ,

∣∣∣∣∂f1∂V

∣∣∣∣ = |θ| < ∞.
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Similarly by differentiating the function f2 in (3.4), we have

∂f2
∂S

= ξI,

∣∣∣∣∂f2∂S

∣∣∣∣ = |ξI| ⩽ K < ∞

∂f2
∂E

= −(µ+ ϕ2 + α),

∣∣∣∣∂f2∂E

∣∣∣∣ = |−(µ+ ϕ2 + α)| ⩽ K < ∞

∂f2
∂I

= ξS,

∣∣∣∣∂f2∂I

∣∣∣∣ = |ξS| ⩽ K < ∞

∂f2
∂Q

= 0,

∣∣∣∣∂f2∂Q

∣∣∣∣ = |0| < ∞,
∂f2
∂R

= ω,

∣∣∣∣∂f2∂R

∣∣∣∣ = |ω| < ∞,
∂f2
∂V

= θ,

∣∣∣∣∂f2∂V

∣∣∣∣ = |θ| < ∞.

By differentiating the third function equation in (3.4), we have

∂f3
∂S

= 0,

∣∣∣∣∂f3∂S

∣∣∣∣ = |0| < ∞,
∂f3
∂E

= α,

∣∣∣∣∂f3∂E

∣∣∣∣ = |α| ⩽ K < ∞,

∂f3
∂I

= −(γ2 + µ+ q + ϕ3 + δ),

∣∣∣∣∂f3∂I

∣∣∣∣ = |−(γ2 + µ+ q + ϕ3 + δ)| ⩽ K < ∞

∂f3
∂Q

= 0,

∣∣∣∣∂f3∂Q

∣∣∣∣ = |0| < ∞,
∂f3
∂R

= 0,

∣∣∣∣∂f3∂R

∣∣∣∣ = |0| < ∞,
∂f3
∂V

= 0,

∣∣∣∣∂f3∂V

∣∣∣∣ = |0| < ∞.

In the functions, the fourth equation in (3.4) is taken into consideration, and by differentiating, we

have

∂f4
∂S

= 0,

∣∣∣∣∂f4∂S

∣∣∣∣ = |0| < ∞,
∂f4
∂E

= 0,

∣∣∣∣∂f4∂E

∣∣∣∣ = |0| < ∞,
∂f4
∂I

= q,

∣∣∣∣∂f4∂I

∣∣∣∣ = |q| ⩽ K < ∞,

∂f4
∂Q

= (µ+ γ1),

∣∣∣∣∂f4∂Q

∣∣∣∣ = |(µ+ γ1)| ⩽ K < ∞ ∂f4
∂R

= 0,

∣∣∣∣∂f4∂R

∣∣∣∣ = |0| < ∞ ∂f4
∂V

= 0,

∣∣∣∣∂f4∂V

∣∣∣∣ = |0| < ∞

In the functions, beginning with the fifth equation in (3.4), and by differentiating we have

∂f5
∂S

= 0,

∣∣∣∣∂f5∂S

∣∣∣∣ = |0| < ∞ ∂f5
∂E

= 0,

∣∣∣∣∂f5∂E

∣∣∣∣ = |0| < ∞ ∂f5
∂I

= γ2,

∣∣∣∣∂f5∂I

∣∣∣∣ = |γ2| ⩽ K < ∞ ∂f5
∂Q

= γ1,∣∣∣∣∂f5∂Q

∣∣∣∣ = |γ1| ⩽ K < ∞ ∂f5
∂R

= −(µ+ ω),

∣∣∣∣∂f5∂R

∣∣∣∣ = |−(µ+ ω)| ⩽ K < ∞ ∂f5
∂V

= 0,

∣∣∣∣∂f5∂V

∣∣∣∣ = |0| < ∞.

Finally, based on the sixth equation in the functions (3.4), and by differentiating we have

∂f6
∂S

= ϕ1,

∣∣∣∣∂f6∂S

∣∣∣∣ = |ϕ1| ⩽ K < ∞,
∂f6
∂E

= ϕ2,

∣∣∣∣∂f6∂E

∣∣∣∣ = |ϕ2| ⩽ K < ∞

∂f6
∂I

= ϕ3,

∣∣∣∣∂f6∂I

∣∣∣∣ = |ϕ3| ⩽ K < ∞ ∂f6
∂Q

= 0,

∣∣∣∣∂f6∂Q

∣∣∣∣ = |0| < ∞

∂f6
∂R

= 0,

∣∣∣∣∂f6∂R

∣∣∣∣ = |0| < ∞ ∂f6
∂V

= −(µ+ θ),

∣∣∣∣∂f6∂V

∣∣∣∣ = |−(µ+ θ)| < ∞

Hence, we have clearly established that all these partial derivatives are continuous and bounded.

Therefore, there exists a unique solution of model equation (3.4).

3.2.3 Equilibrium Points

Disease Free Equilibrium (DFE) in the COVID-19 model (3.1)-(3.2), i.e. an equilibrium without the virus.

In this case, I = E = 0 and Ẋ = 0 are equivalent to f(X) = 0 where X = (S,E, I,Q,R, V ).
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Hence, we need to solve the following system to find the corresponding DFE.

Λ− (µ+ ϕ1)S + θV = 0

ϕ1S − (µ+ θ)V = 0

qI − (µ+ γ1)Q = 0

γ2I + γ1Q− (µ+ ω)R = 0

(3.5)

Solving equation (3.5), we obtain

S =
Λ(µ+ θ)

µ(µ+ θ + ϕ1)
, R = 0, Q = 0, and V =

ϕ1Λ

µ(µ+ θ + ϕ1)
.

Hence, we have

ε∗ = (S∗, E∗, I∗, Q∗, R∗, V ∗) =

(
Λ(µ+ θ)

µ(µ+ θ + ϕ1)
, 0, 0, 0, 0,

ϕ1Λ

µ(µ+ θ + ϕ1)

)
.

An endemic disease equilibrium (EDE) of the model (3.1)-(3.2) is obtained by setting all states Ẋ = 0

which is equivalent to f(X) = 0 and we have;



Λ− ξI∗∗S∗∗ − µS∗∗ − ϕ1S
∗∗ + θV ∗∗ + ωR∗∗ = 0

ξI∗∗S∗∗ − µE∗∗ − ϕ2E
∗∗ − αE∗∗ = 0

αE∗∗ − (γ2 + µ+ q + ϕ3 + δ)I∗∗ = 0

qI∗∗ − (µ+ γ1)Q
∗∗ = 0

γ2I
∗∗ + γ1Q

∗∗ − (µ+ ω)R∗∗ = 0

ϕ1S
∗∗ + ϕ2E

∗∗ + ϕ3I
∗∗ − (µ+ θ)V ∗∗ = 0

(3.6)

From the third and the fourth equations, we have

E∗∗ =
γ2 + µ+ q + ϕ3 + δ

α
I∗∗ (3.7)

Q∗∗ =
qI∗∗

µ+ γ1
(3.8)

Rearranging the fifth equation of the system (3.6) and substituting Q∗∗, we have

R∗∗ =
γ2I

∗∗ + γ1Q
∗∗

µ+ ω
(3.9)

=
((µ+ γ1)γ2 + qγ1)I

∗∗

(µ+ γ1)(µ+ ω)
(3.10)

Adding the first and the second equations of the system (3.6), we have

Λ− (µ+ ϕ1)S
∗∗ + θV ∗∗ + ωR∗∗ − (µ+ ϕ2 + α)E∗∗ = 0 (3.11)
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Rearranging the sixth equation of the system (3.6) and also rearranging equation (3.11), we have the

system of two equations

(µ+ ϕ1)S
∗∗ − θV ∗∗ = Λ+ ωR∗∗ − (µ+ ϕ2 + α)E∗∗ (3.12)

−ϕ1S
∗∗ + (µ+ θ)V ∗∗ = ϕ2E

∗∗ + ϕ3I (3.13)

Solving the equations for S∗∗ and V ∗∗, we have

S∗∗ =
Λ(µ+ θ)− (µ(µ+ ϕ2 + α+ θ) + θα)E∗∗ + θϕ3I

∗∗ + (µ+ θ)ωR∗∗

µ(µ+ ϕ1 + θ)
(3.14)

V ∗∗ =
ϕ1Λ(µ+ θ)− (ϕ2 − ϕ1µ(µ+ ϕ2 + α+ θ) + ϕ1θα)E

∗∗ + ϕ3(θϕ1 + 1)I∗∗ + (µ+ θ)ωϕ1R
∗∗

µ(µ+ ϕ1 + θ)(µ+ θ)

(3.15)

By compiling the results, the endemic equilibrium point is

S∗∗ =
Λ(µ+θ)−(µ(µ+ϕ2+α+θ)+θα)E∗∗+θϕ3I

∗∗+(µ+θ)ωR∗∗

µ(µ+ϕ1+θ)

E∗∗ = (γ2+µ+q+ϕ3+δ)I∗∗

α , Q∗∗ = qI∗∗

(µ+γ1)
R∗∗ = ((µ+γ1)γ2+qγ1)I

∗∗

(µ+γ1)(µ+ω)

V ∗∗ =
ϕ1Λ(µ+θ)−(ϕ2−ϕ1µ(µ+ϕ2+α+θ)+ϕ1θα)E∗∗+ϕ3(θϕ1+1)I∗∗+(µ+θ)ωϕ1R

∗∗

µ(µ+ϕ1+θ)(µ+θ)

(3.16)

3.2.4 Basic Reproduction Number

The basic reproduction number R0, is one of the most important key parameters, that study the ease-time

dynamics of infectious disease. It helps in determining whether or not an infectious disease will spread

through the population. It is defined as the number of secondary infections caused by a single infected

person in a completely susceptible population.

Essentially, it holds:

• If R0 < 1, then the disease will die out.

• If R0 > 1, this is called an epidemic, that is, the disease will spread.

This study employs the Van den Driessche and Watmough methods for establishing R0 [34]. A strategy

for obtaining the next-generation matrix using ordinary differential equations compartmental models

for disease transmission is included in this method. Infected compartments and non-infected (healthy)

compartments will be separated into two categories. If the people in a compartment are infected, it’s

called an infected compartment. If the people in a compartment are infected but not infectious, it’s called

a latent compartment. The non-infected compartments are the rest of the compartments.

In our model (3.1)-(3.2) there are 2 infected compartments and 4 non-infected compartments, the entire

ordinary differential equation model has 4 + 2 dependent variables. Let z be the vector of the dependent
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variables in the infected compartments, and let y be the vector of variables in the non-infected compart-

ments.We have z = (E, I)T ∈ R2 and y = (S,Q,R, V )T ∈ R4. The method below was introduced in [21,

34]. The following steps illustrate how to establish the basic reproduction number R0.

Step 1: We arrange the equations such that the first 2 components of the ODE system correspond to the

infected compartments. Thus, we denote by ż and ẏ the original ODE of the system

ż =

 ż1

ż2

 =

ξIS − (µ+ α+ ϕ2)E,

αE − (γ2 + µ+ q + ϕ3 + δ)I

(3.17)

ẏ =


ẏ1

ẏ2

ẏ3

ẏ4

 =



Λ− ξIS − µS − ϕ1S + θV + ωR,

qI − (µ+ γ1)Q,

γ2I + γ1Q− (µ+ ω)R,

ϕ1S + ϕ2E + ϕ3I − (µ+ θ)V

(3.18)

Step 2: We split the right-hand side in the infected compartments in the following way:

żi = Fi − Vi, ẏj = gj (3.19)

i = 1, ...2, j = 1, ...4 and Vi = V−
i − V+

i

where

• the function Fi represents the rate of appearance of new infections in compartment i.

• the function Vi incorporates the remaining transitional terms, namely births, deaths, disease progres-

sion, etc.

• the function V+
i ⩾ 0 represents the rate of transfer of individuals into compartment i, and

• the function V−
i ⩾ 0 represents the rate of transfer of individuals out of compartment i.

The decomposition satisfies the following properties:

Property 1. Fi(0, y) = 0 and Vi(0, y) = 0 for y ⩾ 0 and i = 1, ...2. The first condition says that all new

infections are secondary infections arising from infected hosts. The second conditions says that there

is no immigration of susceptible individuals into the disease compartments.

Property 2. Fi(z, y) ⩾ 0 ∀ z, y ⩾ 0

Property 3. Vi(z, y) ⩽ 0 whenever zi = 0 for i = 1, ...2. Each component Vi represents the net outflow of

a compartment and must give inflow only (that is, be negative) if the compartment is empty.

Property 4.
∑n

i=1 Vi(z, y) ⩾ 0 ∀ z, y ⩾ 0. The total outflow of all infected compartments is positive.
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Step 3: Assume that the disease-free system

ẏ = g(0, y)

has a unique disease free-equilibrium ϵ∗ = (0, y0) such that all solutions with initial conditions of the form

(0, y) approach (0, y0) as t → ∞. Determine the disease-free equilibrium ϵ0.

Step 4: Determine the matrices F and V with components

fii =
[
∂Fi(0,y0)

∂zj

]
and vii =

[
∂Vi(0,y0)

∂zj

]
(3.20)

These matrices appear from the linearization of the system (3.19) around the DFE. Since Fi(0, y) =

0 and Vi(0, y) = 0 by Property 1, it holds that

∂Fi(0, y0)

∂yj
=

∂Vi(0, y0)

∂yj
= 0

for every pair (i, j). This implies that the linearized equations for the infected compartments z while

computed at the DFE are decoupled from the remaining equations. The linearized system for the infected

compartments can be written as

ż = (F − V )z,

where the F and V matrices are defined above.

Step 5: The next generation matrix is defined as

R0 = ρ(FV−1) = ρ(K),

where F, V are the Jacobian of F , V respectively and ρ(K) denotes the spectral radius of K.

Spectral radius of a matrix: The spectral radius of a square matrix is the maximum of the absolute

values of its eigenvalues.

For the model under study, we find the Basic Reproduction number R0 following the 5 steps illustrated

above. First, we regroup the model (3.1) into the Infected compartment and Non-Infected compartment.

The infected compartments are: 
dE
dt = ξIS − (µ+ α+ ϕ2)E

dI
dt = αE − (γ2 + µ+ q + ϕ3 + δ)I.

(3.21)

The Non-infected compartments are:
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

dS
dt = Λ− ξIS − µS − ϕ1S + θV + ωR

dQ
dt = qI − (µ+ γ1)Q

dR
dt = γ2I + γ1Q− (µ+ ω)R

dV
dt = ϕ1S + ϕ2E + ϕ3I − (µ+ θ)V.

(3.22)

The compartments that are infected and not infected are described in the F and V matrix below.

F :=

ξIS

0

 and V :=

 −(µ+ α+ ϕ2)E

+αE − (γ2 + µ+ q + ϕ3 + θ)I

 .

The Jacobian of F and V are computed as follows

F(ε∗) = ∇F (ε∗) =

0 ξS

0 0

 , V = ∇V =

(µ+ α+ ϕ2) 0

−α (γ2 + µ+ q + ϕ3 + δ)

 .

Hence, at the Disease Free Equilibrium,

FV−1(ε∗) =

0 ξS∗

0 0


 1

(µ+α+ϕ2)
0

α
(µ+α+ϕ2)(γ2+µ+q+ϕ3+δ)

1
(γ2+µ+q+ϕ3+δ)



=


αξS∗

(µ+α+ϕ2)(γ2+µ+q+ϕ3+δ)
ξS∗

(γ2+µ+q+ϕ3+δ)

0 0

 .

Computing eigenvalues of (FV−1), and replacing the results of the disease-free equilibrium ε∗, we have

λ1 = 0 and

λ2 =
αξ(µ+ θ)

(µ+ θ + ϕ1)(µ+ α+ ϕ2)(γ2 + µ+ q + ϕ3 + δ)

By picking the highest dominant value, then we get the basic reproduction number

R0 =
αξ(µ+ θ)

(µ+ θ + ϕ1)(µ+ α+ ϕ2)(γ2 + µ+ q + ϕ3 + δ)
.

3.3 Local Stability

Theorem 3.3.1. The DFE is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. The Jacobian matrix evaluated at the DFE state for system (3.1) is given by
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J(ε∗) =



−(µ+ ϕ1) 0 ξS∗ 0 ω θ

0 −(µ+ α+ ϕ2) ξS∗ 0 0 0

0 α −(γ2 + µ+ q + ϕ3 + δ) 0 0 0

0 0 q −(µ+ γ1) 0 0

0 0 γ2 γ1 −(µ+ ω) 0

ϕ1 ϕ2 ϕ3 0 0 −(µ+ θ)



For simplicity, Let:= a1 = (µ+ϕ1), a2 = ξS∗, a3 = (µ+α+ϕ2), a4 = (γ2 +µ+ q+ϕ3 + δ), a5 = (µ+ γ1),

a6 = (µ+ ω), and a7 = (µ+ θ).

By substituting the notation above, we have

det(J(ε∗)− λI) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1 − λ 0 a2 0 ω θ

0 −a3 − λ a2 0 0 0

0 α −a4 − λ 0 0 0

0 0 q −a5 − λ 0 0

0 0 γ2 γ1 −a6 − λ 0

ϕ1 ϕ2 ϕ3 0 0 −a7 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Next, to compute the eigenvalues of J(ε∗), one obtains the following results for the eigenvalues and the

remaining terms in the characteristics equation:

λ1 = −a1, λ2 = −a5, λ3 = −a6, λ4 = −a7, and λ2 + (a3 + a4)λ+ (a3a4 − a2α) = 0.

By applying the Routh–Hurwitz criterion, the quadratic equation will have roots with negative real parts

if and only if (a3 + a4) > 0, and (a3a4 − a2α) > 0.

Now, considering (a3a4 − a2α) > 0, by substituting a3, a4, a2, and S∗ back into the inequality expression,

we obtain

αξ(µ+ θ)

(µ+ θ + ϕ1)(µ+ α+ ϕ2)(γ2 + µ+ q + ϕ3 + δ)
< 1.

This implies that, R0 < 1. As a result, the disease-free equilibrium, ε∗ is locally asymptotically stable if

R0 < 1.

The threshold quantity R0 is the control reproduction number for the model (3.1)-(3.2). It represents the

average number of secondary COVID-19 infections generated by a typical infectious individual (infected,
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exposed, and vaccinated) in a completely susceptible population where control measures are present.

As a consequence of Theorem (3.3.1), biologically speaking, COVID-19 spread can be reduced from the

population when R0 < 1 if the initial sizes of the sub-populations of the model are in the region of

attraction of the DFE.

3.4 Global Stability of the Disease-Free Equilibrium via Lya-

punov Method

Definition 3.4.1. Let L be a continuous scalar function, L : Rn → R, then the function L is called

positively definite (or globally positively definite) on the entire space if L(x∗) = 0 and L(x) > 0 for x ̸= x∗,

where x∗ is an equilibrium point of the autonomous system dx
dt = f(x).

We define the derivative of L(x) along the solutions of the system of differential equations as

L′(x) =
d

dt
L(x(t)) =

∂L

∂x

dx

dt
.

Now, Lyapunov’s theorem for global stability of the equilibrium x∗ is given as the following theorem:

Theorem 3.4.1 (Lyapunov’s Stability ). If a function L(x) is globally positively definite and radially

unbounded, and its time derivative is globally negative definite. L′(x) < 0 for all x ̸= x∗, then the

equilibrium x∗ is globally stable. We refer the reader to [28], e.g. for a proof of Theorem 3.4.1.

There are no established rules for finding a Lyapunov function, and finding a Lyapunov function is tricky

and computationally intensive. In this work, we adopt an approach by Shuai and Van den Driessche [31]

to prove the global asymptotic stability of disease-free equilibrium points (DFE).

Theorem 3.4.2. Let F and V be defined such that

F =
∂Fi

∂xj

¯(x) ≥ 0, V =
∂Vi

∂xj

¯(x) ≥ 0, with 1 ⩽ i, j ⩽ m, (3.23)

and set

f(x, y) = (F − V )x−F(x, y) + V(x, y). (3.24)

If f(x, y) ⩾ 0 in Γ ⊂ Rn+m
+ , F ⩾ 0, V −1 ⩾ 0, and R0 ⩽ 1, the the function Q = wV −1x is a Lyapunov

function for the model (3.1) on Γ.

Proof. To determine the Lyapunov candidate for the Global Asymptotically Stability (GAS) of the DFE,

we assume 1

L(E, I) = A1E +A2I, (3.25)

1The disease classes are usually considered when constructing Lyapunov function of infectious diseases modeling.
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where the constants A1 and A2 are to be determined: Corresponding to the infected classes of the model(3.1),

we assume a Peron eigenvector as follows, w = (w1, w2). Evaluating V −1F and w.V −1F = R0w
T , we

obtain the choice of the constants

A1 =
R0α

(µ+ α+ ϕ2)(γ2 + µ+ q + ϕ3 + δ)
and A2 =

R0

(γ2 + µ+ q + ϕ3 + δ)

Hence, the Lyapunov candidate becomes

L =
R0α

(µ+ α+ ϕ2)(γ2 + µ+ q + ϕ3 + δ)
E +

R0

(γ2 + µ+ q + ϕ3 + δ)
I.

Taking the derivative with respect to t gives

L̇ =
R0α

(µ+ α+ ϕ2)(γ2 + µ+ q + ϕ3 + δ)
Ė +

R0

(γ2 + µ+ q + ϕ3 + δ)
İ .

By substituting the differential equation E and I, we obtain.

L̇ =
R0α

(µ+ α+ ϕ2)(γ2 + µ+ q + ϕ3 + δ)

[
ξIS0 − µE − ϕ2E − αE

]
+

R0

(γ2 + µ+ q + ϕ3 + δ)

[
αE − (γ2 + µ+ q + ϕ3 + δ)I

]

=
R0αξS

0I

(µ+ α+ ϕ2)(γ2 + µ+ q + ϕ3 + δ)
−R0I.

If we factor out R0 and substituting S0, and N0, we get

L̇ < R0

(
αξ(µ+ θ)

(µ+ θ + ϕ1)(µ+ α+ ϕ2)(γ2 + µ+ q + ϕ3 + δ)
− 1

)
I.

Again, recall that

R0 =
αξ(µ+ θ)

(µ+ θ + ϕ1)(µ+ α+ ϕ2)(γ2 + µ+ q + ϕ3 + δ)

Thus,

L̇ < R0(R0 − 1)I.

Hence, we have that L̇ < 0 for R0 < 1 with L̇ = 0 if I = 0. Hence, L is a Lyapunov function on D. Thus,

by the La Salle’s Invariance Principle [18], every solution to the equations (3.1), with initial conditions in

D, approaches the DFE ε∗ as t → 0 whenever R0 < 1.

3.5 Sensitivity Analysis of R0

The sensitivity analysis is used to figure out how important each model parameter is with respect to

disease transmission. It is vital to understand the relative relevance of the many elements associated with

COVID-19 transmission in Nigeria in order to determine how effectively to prevent human mortality and

morbidity caused by its spread. In this thesis, numerical sensitivity indices are used to identify parameters

that have a large impact on the basic reproduction number R0 and should be targeted by intervention
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strategies. In conducting the sensitivity analysis, this thesis follows the method introduced by Chen et

al.[5].

Definition 3.5.1. The normalized forward sensitivity index of a function, u that depends differentiably on

a parameter p is defined as

Γu
p =

∂u

∂p

p

u
.

Given that R0 has an explicit formula. We calculate the sensitivity of R0 as

ΓR0
p =

∂R0

∂p
× p

R0
,

to each of the fifteen different parameters described in Table 3.1. For example, the sensitivity index of R0

with respect to α is

ΓR0
α =

∂R0

∂α

α

R0
= 1− α

(α+ µ+ ϕ2)
> 0.

The sensitivity index of R0 with respect to θ is

ΓR0

θ =
∂R0

∂θ

θ

R0
= θ − θ

(θ + µ+ ϕ1)
> 0,where(θ > 0, µ > 0, ϕ1 > 0).

The sensitivity index of R0 with respect to µ is

ΓR0
µ =

∂R0

∂µ

µ

R0
= µ

(
1

(θ + µ)
− 1

(θ + µ+ ϕ1)
− 1

(γ2 + µ+ q + δ + ϕ3)
− 1

(α+ µ+ ϕ2)

)
> 0.

The sensitivity index of R0 with respect to ϕ1 is

ΓR0

ϕ1
=

∂R0

∂ϕ1

ϕ1

R0
=

−ϕ1

(θ + µ+ ϕ1)
< 0.

The sensitivity index of R0 with respect to ϕ2 is

ΓR0

ϕ2
=

∂R0

∂ϕ2

ϕ2

R0
=

−ϕ2

(α+ µ+ ϕ2)
< 0.

The sensitivity index of R0 with respect to ϕ3 is

ΓR0

ϕ3
=

∂R0

∂ϕ3

ϕ3

R0
=

−ϕ3

(γ2 + µ+ q + δϕ3)
< 0.

The sensitivity index of R0 with respect to γ2 is

ΓR0
γ2

=
∂R0

∂γ2

γ2
R0

=
−γ2

(γ2 + µ+ q + δ + ϕ3)
< 0.

The sensitivity index of R0 with respect to δ is

ΓR0

δ =
∂R0

∂δ

δ

R0
=

−δ

(γ2 + µ+ q + δ + ϕ3)
< 0.

The sensitivity index of R0 with respect to q is

ΓR0
q =

∂R0

∂q

q

R0
=

−q

(γ2 + µ+ q + δϕ3)
< 0.

All the results obtained above are shown in Table 3.1.
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Table 3.1: Numerical values of sensitivity indices of R0.

Parameter symbol Sensitivity Index

β 1

ξ 1

κ Negative

α Positive

θ Positive

µ Positive

ϕ1 Negative

ϕ2 Negative

ϕ3 Negative

γ2 Negative

δ Negative

q Negative

R0 0.00543
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Chapter 4

Discussion of Results

4.1 Analysis and Discussion of Results

To illustrate the behavior of the solution of our model, numerical simulations of the model (3.1)-(3.2) are

carried out using the parameter values provided in Table 4.1. We simulate the model by using ode45 solver

in MATLAB. Here, we use the choice

ξ =
β(1− κ)

N
,where N is the total population. (4.1)

Given that the force of infection is ξ at (4.1), the sensitivity indexes of R0 with respect to β and ξ are

both 1. Numerical simulations and graphical illustrations are carried out to verify some of the analytical

results on the stability system (3.1). The initial conditions used in simulating the COVID-19 model can

be found in Appendix (A). We simulate the COVID-19 model, a case study of Nigeria with intervention

strategies, and analyze the effect of varying key parameters in the model with intervention strategies. The

reported COVID-19 data used for the model fitting in Table 1 can be found in [23].

Figure 4.1 shows a good agreement between the fitted data and the reported data. This validates the

model as a reliable tool for the existing phenomenon and surely predicts the future. It should be noted

that the small deviation in the curve fitting between 0 to 15 days can be traced to the uncertainty present

in real-life situations, however, both the fitted and the reported data are in perfect agreement after the

15 days. The model may advise the policymakers on COVID-19 controls and on short-time strategies

employable to meet the demand of the population.
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Table 4.1: Parameter values for COVID-19 Model for Nigeria Case.

Parameter symbol Baseline Value Source

Λ 0.0107 [36, 37]

κ 0.5 Assumed

ϕ1 0.0571 Fitted

ϕ2 0.00134 Fitted

ϕ3 0.0153 Fitted

θ 0.0009 Assumed

ω 0.01 [7]

µ 0.0011188 [24]

β 0.1086 [1]

q 1/7 [29]

α 1/5.2 /day [27, 35]

δ 0.015 /day [12, 27]

γ1 0.176 [32]

γ2 0.142/day [17]
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Figure 4.1: Model fitted to Covid-19 data in Lagos, Nigeria.
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Figures 4.2 show the effect of adjusting the rate of the non-pharmaceutical intervention strategies on

infected individuals and it is observed that as the rate of non-pharmaceutical intervention strategies

increases, the infected class decreases. This implies that non-pharmaceutical intervention strategies have

significant effects on the transmission of the disease and can therefore be used as a means of controlling

the spread of COVID-19.
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Figure 4.2: Effect of combination of intervention strategies (κ) on the Infected Individuals.

The effect of varying the vaccination rate ϕ1 of the susceptible compartment on infected individuals is shown

in Figure 4.3. It can be seen that with an increase in the vaccination rate of the susceptible compartment,

the number of infected individuals decreases. This implies that when we implement vaccination as a

measure, many people adhere to it and accept it, and get vaccinated. When people get vaccinated, the

number of people who will be susceptible or who will be highly prone to be infected by COVID-19 will be

reduced drastically and it can be seen that those people move from the Susceptible compartment to the

Vaccinated compartment.
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Figure 4.3: Effect of vaccination rate in the susceptible class (ϕ1) on the Infected Individuals.

The effect of varying the vaccination rate ϕ2 of the exposed compartment on infected individuals is shown

in Figure 4.4. It can be seen that when we increased the vaccination rate with good efficacy in the exposed

compartment, the number of infected, and the total population of individuals decreases. This suggests that

when vaccination is implemented as a measure, many people will stick to it, accept it, and get themselves

vaccinated. When people are vaccinated, it suggests that the number of people who are exposed or who are

highly likely to get COVID-19 will substantially decrease, and it is evident that those individuals migrate

from the Exposed compartment to the Vaccinated compartment.
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Figure 4.4: Effect of vaccination rate in the exposed class (ϕ2) on the Infected Individuals.

A similar result is observed in the infected compartment as shown in Figure 4.5. Vaccination is a preventive

measure that is targeted at reducing the infection rate by building human body immunity. As a result,

infected individuals would reduce as the abundance of exposed humans decreases. In other words, as the

number of exposed individuals reduces, the number of infectious humans numbers reduces.
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Figure 4.5: Effect of vaccination rate in the infected class (ϕ3) on the Infected Individuals.

The effect of varying the initial condition I(0) on the vaccinated compartment is shown in Figure 4.6.

It can be seen that when we increased the initial condition, the vaccinated compartment increases. The

vaccinated population increases as the number of initially infected individuals increase. This could be

because of the fear of death that prompted the infected population to seek vaccination to reduce the

chance of death. Hence, vaccinated compartment increase with increasing number of infected individuals.

32



0 10 20 30 40 50 60 70 80 90 100

Time (days)

0

0.5

1

1.5

2

2.5

3

3.5

V
ac

ci
na

te
d 

co
m

pa
rtm

en
t

104

I(0) = 1000

I(0) = 2000

I(0) = 3000

Figure 4.6: Effect of I(0) on vaccinated compartment V (t).

The effect of varying the recruitment rate Λ on the susceptible and vaccinated compartments is shown in

Figure 4.7 and 4.8 respectively. It can be seen that when we increased the recruitment rate, the susceptible

compartment increases. Also, it is worth noting that increasing the recruitment rate has no effect on the

vaccinated compartment (see Figure 4.8).
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Figure 4.7: Effect of increasing the recruitment rate (Λ) on Susceptible compartment.
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Figure 4.8: Effect of increasing the recruitment rate (Λ) on Vaccinated compartment.

The effect of varying the initial condition R(0) on the susceptible compartment is shown in Figure 4.9. It

can be seen that when we increased the initial condition, the susceptible compartment increases.
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Figure 4.9: Effect of increasing R(0) on the Susceptible compartment.
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4.2 Discussion of the Sensitivity Analysis

Table 3.1 shows that the parameters (β, θ, µ, and α) with positivity indices have the potential to increase

the endemicity of the infection in the population (i.e., the positive sensitivity parameter) because as they

increase, the value of the reproduction number increases. Also, the parameters with negative sensitivity

indices contribute to controlling the expansion of the infection in the population. This is because an

increase in the parameters will result in a decrease in the value of the reproduction number.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this study, we developed, analyzed a model to describe the transmission dynamics of the spread of

COVID-19, a case study of Nigeria.

We sub-divided the human population into Susceptible humans S(t), Exposed humans E(t), Infected

humans I(t), Quarantined humans Q(t), Recovered humans R(t), and Vaccinated humans V (t). We showed

that the model is mathematically and epidemiologically meaningful by investigating the invariant region,

the positivity of solutions, and the existence and uniqueness of solutions. The local and global stability of

the model was analyzed, and we obtained the basic reproduction number R0 using the next-generation

matrix approach. The results show that the COVID-19 model equilibrium ϵ∗ is locally and globally

asymptotically stable if R0 < 1 and unstable if R0 > 1. A sensitivity analysis of the model parameters on

the basic reproduction number was conducted to see the effect of key parameters on the disease dynamics.

Overall, the result shows that the parameters (θ, µ, β, and α) with positivity indices have the potential of

increasing the endemicity of the infection in the population. That is, as the positive sensitivity parameter

increases, the values of the basic reproduction number increase. Numerical simulations were carried out and

we explored the effect of controlled parameters on the infected class and the total population. Conclusively,

as the model reproduces the results from the test case, it also suggests that taking control measures to

decrease the force of infection is beneficial and this will mitigate the spread of COVID-19 in the population.

5.2 Recommendations

Based on the outcomes of this study, the following recommendations are suggested as means of containing

and controlling the spread of COVID-19 in Nigeria:

1. Practicing intervention strategies will reduce the spread of the disease.
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2. Constant practice of getting vaccines will help reduce the transmission in the population.

3. Enforcement of the control measures as well as penalties for noncompliance.

5.3 Future Work

It is well known that optimal control is useful in epidemiology. While mathematical modeling of infectious

diseases has shown that isolation, quarantine, vaccination, and/or treatment are frequently required to

completely eradicate infectious diseases. Therefore, it is crucial to examine the optimal control theory,

which will inform us of how they should be administered by providing the right times for intervention

and the right amounts. Additionally, stochastic simulations will be valuable for capturing the random

character of COVID-19 in the population. Another key area that can be implemented in the model is

continuous awareness through effective communication of COVID-19-related risks.
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Table 1: Reported cases of COVID-19 in Lagos Nigeria from 16/3/2020 to 30/4/2020.

Date Cases Cumulative Cases Date Cases Cumulative Cases

16/03/2020 1 1 13/04/2020 13 182

17/03/2020 0 1 14/04/2020 25 207

18/03/2020 4 5 15/04/2020 18 225

19/03/2020 4 9 16/04/2020 19 244

20/03/2020 0 9 17/04/2020 32 276

21/03/2020 10 19 18/04/2020 23 299

22/03/2020 3 22 19/04/2020 70 369

23/03/2020 2 24 20/04/2020 0 423

24/03/2020 4 28 21/04/2020 54 497

25/03/2020 3 31 22/04/2020 74 1

26/03/2020 12 43 23/04/2020 78 575

27/03/2020 0 43 24/04/2020 80 655

28/03/2020 14 57 25/04/2020 27 682

29/03/2020 10 67 26/04/2020 42 724

30/03/2020 13 80 27/04/2020 33 757

31/03/2020 1 81 28/04/2020 80 827

01/04/2020 9 90 29/04/2020 87 914

02/04/2020 7 97 30/04/2020 45 959

03/04/2020 11 108

04/04/2020 0 108

05/04/2020 5 113

06/04/2020 0 113

07/04/2020 10 123

08/04/2020 15 138

09/04/2020 13 151

10/04/2020 5 156

11/04/2020 11 167

12/04/2020 2 169
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Appendix A

First Appendix

% Simulation showing various dynamics of the model as I(0) is varied on V(t)

% from 1000 to 3000

options = odeset('RelTol',1e-4,'AbsTol',[1e-9 1e-9 1e-9 1e-9 1e-9 1e-9]);

for i = [1, 2, 3]

I0 = 1000*i;

[T,Y] = ode45(@A3a,[0 100],[5000 2003 I0 0 0 200],options);

if i == 1

txt = "b--";

elseif i == 2

txt = "r--";

elseif i == 3

txt = "k--";

end

figure(1)

plot(T,Y(:,6), txt, 'MarkerSize',5, 'LineWidth',2.5)

hold on

end

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Vaccinated compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%legend('I with age', 'I without age');

function dZ = A3a(t,Z)

dZ = zeros(6,1); % a column vector
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lambda = 0.017; mu = 0.0011188; phi1 = 0.0571; phi2 = 0.00134;

phi3 = 0.0153; q = 0.143; gamma1 = 0.176; gamma2 = 0.142; kappa = 0.5;

beta = 0.1018; delta = 0.015; alpha = 0.2; omega = 0.0111; theta = 0.0009;

epsilon = (beta*(1-kappa))/(5000+2003+0+0+0+200);

dZ(1) = lambda - epsilon*Z(3)*Z(1) - mu*Z(1) + theta*Z(6) + omega*Z(5);

dZ(2) = epsilon*Z(3)*Z(1) - mu*Z(2) - phi2*Z(2) - alpha*Z(2);

dZ(3) = alpha*Z(2) - (gamma2 + mu + q + phi3 + delta)*Z(3);

dZ(4) = q*Z(3) - (mu + gamma1)*Z(4);

dZ(5) = gamma2*Z(3) + gamma1*Z(4) - (mu+omega)*Z(5);

dZ(6) = phi1*Z(1) + phi2*Z(2) + phi3*Z(3) - (mu+theta)*Z(6);

end

% Simulation showing various dynamics of the model as I(0) is varied on V(t)

% from 1000 to 3000

global lambda

options = odeset('RelTol',1e-4,'AbsTol',[1e-9 1e-9 1e-9 1e-9 1e-9 1e-9]);

i = 1;

for lambda = [0.2, 1.0, 1.5]

[T,Y] = ode45(@A3a,[0 100],[5000 2003 1000 0 0 200],options);

if i == 1

txt = "b--";

elseif i == 2

txt = "r--";

elseif i == 3

txt = "k--";

end

figure(1)

plot(T,Y(:,1),txt, 'MarkerSize',5, 'LineWidth',2.5)

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Susceptible compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%%legend('I with age', 'I without age');

hold on

figure(2)

plot(T,Y(:,2),txt, 'MarkerSize',5, 'LineWidth',2.5)
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xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Exposed compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%%legend('I with age', 'I without age');

hold on

figure(3)

plot(T,Y(:,3),txt, 'MarkerSize',5, 'LineWidth',2.5)

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Infected compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%%legend('I with age', 'I without age');

hold on

figure(4)

plot(T,Y(:,4),txt, 'MarkerSize',5, 'LineWidth',2.5)

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Quarantined compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%%legend('I with age', 'I without age');

hold on

figure(5)

plot(T,Y(:,5),txt, 'MarkerSize',5, 'LineWidth',2.5)

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Recovered compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%%legend('I with age', 'I without age');

hold on

figure(6)

plot(T,Y(:,6), txt, 'MarkerSize',5, 'LineWidth',2.5)

hold on

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Vaccinated compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

i = i + 1;

end
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function dZ = A3a(t,Z)

global lambda

dZ = zeros(6,1); % a column vector

%lambda = 0.017;

mu = 0.0011188; phi1 = 0.0571; phi2 = 0.00134;

phi3 = 0.0153; q = 0.143; gamma1 = 0.176; gamma2 = 0.142; kappa = 0.5;

beta = 0.1018; delta = 0.015; alpha = 0.2; omega = 0.0111; theta = 0.0009;

epsilon = (beta*(1-kappa))/(5000+2003+0+0+0+200);

dZ(1) = lambda - epsilon*Z(3)*Z(1) - mu*Z(1) + theta*Z(6) + omega*Z(5);

dZ(2) = epsilon*Z(3)*Z(1) - mu*Z(2) - phi2*Z(2) - alpha*Z(2);

dZ(3) = alpha*Z(2) - (gamma2 + mu + q + phi3 + delta)*Z(3);

dZ(4) = q*Z(3) - (mu + gamma1)*Z(4);

dZ(5) = gamma2*Z(3) + gamma1*Z(4) - (mu+omega)*Z(5);

dZ(6) = phi1*Z(1) + phi2*Z(2) + phi3*Z(3) - (mu+theta)*Z(6);

end

% Simulation showing various dynamics of the model as recruitment rate (Lambda) on S(t) and V(t) is varied

%

global lambda

options = odeset('RelTol',1e-4,'AbsTol',[1e-9 1e-9 1e-9 1e-9 1e-9 1e-9]);

i = 1;

for lambda = [0.2, 1.0, 1.5]

[T,Y] = ode45(@A3a,[0 100],[5000 2003 1000 0 0 200],options);

if i == 1

txt = "b--";

elseif i == 2

txt = "r--";

elseif i == 3

txt = "k--";

end

figure(1)

plot(T,Y(:,1),txt, 'MarkerSize',5, 'LineWidth',2.5)

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)
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ylabel('Susceptible compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%%legend('I with age', 'I without age');

hold on

figure(2)

plot(T,Y(:,2),txt, 'MarkerSize',5, 'LineWidth',2.5)

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Exposed compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%%legend('I with age', 'I without age');

hold on

figure(3)

plot(T,Y(:,3),txt, 'MarkerSize',5, 'LineWidth',2.5)

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Infected compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%%legend('I with age', 'I without age');

hold on

figure(4)

plot(T,Y(:,4),txt, 'MarkerSize',5, 'LineWidth',2.5)

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Quarantined compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%%legend('I with age', 'I without age');

hold on

figure(5)

plot(T,Y(:,5),txt, 'MarkerSize',5, 'LineWidth',2.5)

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Recovered compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%%legend('I with age', 'I without age');

hold on

figure(6)

plot(T,Y(:,6), txt, 'MarkerSize',5, 'LineWidth',2.5)

hold on

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)
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ylabel('Vaccinated compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

i = i + 1;

end

function dZ = A3a(t,Z)

global lambda

dZ = zeros(6,1); % a column vector

%lambda = 0.017;

mu = 0.0011188; phi1 = 0.0571; phi2 = 0.00134;

phi3 = 0.0153; q = 0.143; gamma1 = 0.176; gamma2 = 0.142; kappa = 0.5;

beta = 0.1018; delta = 0.015; alpha = 0.2; omega = 0.0111; theta = 0.0009;

epsilon = (beta*(1-kappa))/(5000+2003+0+0+0+200);

dZ(1) = lambda - epsilon*Z(3)*Z(1) - mu*Z(1) + theta*Z(6) + omega*Z(5);

dZ(2) = epsilon*Z(3)*Z(1) - mu*Z(2) - phi2*Z(2) - alpha*Z(2);

dZ(3) = alpha*Z(2) - (gamma2 + mu + q + phi3 + delta)*Z(3);

dZ(4) = q*Z(3) - (mu + gamma1)*Z(4);

dZ(5) = gamma2*Z(3) + gamma1*Z(4) - (mu+omega)*Z(5);

dZ(6) = phi1*Z(1) + phi2*Z(2) + phi3*Z(3) - (mu+theta)*Z(6);

end

% Simulation showing various dynamics of the model as R(0) is varied

% from 1000 to 3000

options = odeset('RelTol',1e-4,'AbsTol',[1e-9 1e-9 1e-9 1e-9 1e-9 1e-9]);

for i = [1,2,3]

R0 = 1000*i;

[T,Y] = ode45(@A3a,[0 100],[5000 2003 100 0 0 R0],options);

if i == 1

txt = "b--";

elseif i == 2

txt = "r--";

elseif i == 3

txt = "k--";
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end

figure(1)

plot(T,Y(:,1), txt, 'MarkerSize',5, 'LineWidth',2.5)

hold on

end

xlabel('Time (days)','fontsize',14,'FontName','times new roman','LineWidth',2)

ylabel('Susceptible compartment','fontsize',14,'FontName','times new roman','LineWidth',2)

%legend('I with age', 'I without age');

function dZ = A3a(t,Z)

dZ = zeros(6,1); % a column vector

lambda = 0.017; mu = 0.0011188; phi1 = 0.0571; phi2 = 0.00134;

phi3 = 0.0153; q = 0.143; gamma1 = 0.176; gamma2 = 0.142; kappa = 0.5;

beta = 0.1018; delta = 0.015; alpha = 0.2; omega = 0.0111; theta = 0.0009;

epsilon = (beta*(1-kappa))/(5000+2003+0+0+0+200);

dZ(1) = lambda - epsilon*Z(3)*Z(1) - mu*Z(1) + theta*Z(6) + omega*Z(5);

dZ(2) = epsilon*Z(3)*Z(1) - mu*Z(2) - phi2*Z(2) - alpha*Z(2);

dZ(3) = alpha*Z(2) - (gamma2 + mu + q + phi3 + delta)*Z(3);

dZ(4) = q*Z(3) - (mu + gamma1)*Z(4);

dZ(5) = gamma2*Z(3) + gamma1*Z(4) - (mu+omega)*Z(5);

dZ(6) = phi1*Z(1) + phi2*Z(2) + phi3*Z(3) - (mu+theta)*Z(6);

end
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